Epidemiological and economic impact of potential increased hepatitis C treatment uptake in Australia

© National Centre in HIV Epidemiology and Clinical Research 2010

ISBN 978 0 7334 2892-0

This publication is available at Internet address http://www.nchecr.unsw.edu.au

Suggested citation:

National Centre in HIV Epidemiology and Clinical Research. Epidemiological and economic impact of potential increased hepatitis C treatment uptake in Australia 2010. National Centre in HIV Epidemiology and Clinical Research, The University of New South Wales, Sydney, NSW

National Centre in HIV Epidemiology and Clinical Research CFI Building, Corner Boundary & West Streets, Darlinghurst NSW 2010 AUSTRALIA

Telephone: 02 9385 0900 Facsimile: 02 9385 0920 International prefix: 612 E-mail: recept@nchecr.unsw.edu.au

Epidemiological and economic impact of potential increased hepatitis C treatment uptake in Australia 2010

Executive summary

Hepatitis C virus (HCV) is a blood-borne virus; HCV infection is one of the most commonly notified diseases in Australia and is a major health problem. About 284,000 people were infected with HCV in Australia in 2008, with nearly 10,000 new infections occurring each year. Most new HCV infections are a result of injecting drug users (IDUs) sharing injecting equipment.

Despite advances in HCV therapy and most of the treatment costs covered by the government, the number of HCV-infected people receiving treatment has remained low, at around 3,500 (1-2% of chronic HCV cases) in 2008. At current HCV treatment levels, the burden of advanced liver disease is projected to continue to rise over the next two decades.

This project investigated the possible effects of increased rates of treatment, compared with current treatment rates, on the future health and economic burden of hepatitis C around Australia.

Methods

A dynamic mathematical model was used to reflect the current burden and project the future burden of chronic HCV infection around Australia for each of the following treatment scenarios:

- Current treatment scenario: no change from current practice;
- *Reduction scenario*: treatments decline to 2,000 per year from 2010 onwards;
- Increased scenario 1: treatments increase steadily to 6,000 per year from 2011 onwards;
- *Increased scenario 2*: treatments increase steadily to 8,000 per year from 2012 onwards;
- *Increased scenario 3*: treatments increase steadily to 12,000 per year from 2014 onwards.

Key findings

Under the current treatment scenario, where about 3,500 cases are treated each year, it was estimated that there would be about 11,700 new cases of hepatitis C in Australia in 2010, which would remain relatively stable over the next 30 years (Figure 1). The model estimated 228 new cases of liver failure, 121 new cases of hepatocellular carcinoma (HCC), 44 liver transplant cases, and 241 liver-related deaths in 2010. These cases would increase by 11-13% in the next 30 years under current conditions.

Under the reduced treatment scenario, where treatments decreased to 2,000 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%.

If treatment rates are increased over the next five years to 6,000, 8,000, or 12,000 cases per year (increased treatment scenarios 1, 2, and 3), the number of new cases of liver failure and HCC over 30 years would be expected to decrease by 6-7%, 12-14%, and 20-22%, respectively. Similarly, the number of liver-related deaths and liver transplants would decline by 3-4%, 9-10%, and 17-18% respectively over the period.

Under the increased treatment scenarios 1, 2, and 3, the incremental quality-adjusted life years (QALYs) gained would be 1,174, 1,778 and 2,687 per year, respectively.

Under the increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$3.5m, \$5.5m, and \$9m each year respectively over the next 30 years (5% discount). There would no longer be cost savings if the health sector cost is increased by 50%.

From a health sector perspective, the incremental cost-effectiveness ratios (ICERs) for increased treatment scenarios 1, 2, and 3 relative to the current treatment scenario were \$17,028, \$16,891, and \$16,577 per QALY respectively for the period 2010-2039 (5% discount).

Conclusions

Increased hepatitis C treatment up to about three times the current levels will increase life years (LYs) and QALYs in the long-term, and is associated with total cost savings. It is cost-effective and comparable to other well-accepted public health interventions. Strategies to improve treatment uptake remains a critical priority.

Acknowledgements

This report was conducted by a team of investigators at the National Centre in HIV Epidemiology and Clinical Research, The University of New South Wales, Sydney, Australia and the Toronto Health Economics and Technology Assessment Collaborative, University of Toronto, Toronto, Canada. The technical analysis was carried out by Rosie Thein, Alexander Hoare, David Wilson, and Murray Krahn. Greg Dore acted in an advisory manner. Amy Kwon, Jenny Iversen, and Lisa Maher provided and interpreted data for use in the analysis.

The authors would also like to thank Ann Magnus, Deakin University, Melbourne and Jonathan Anderson, NCHECR, Sydney, and Louisa Wright and James Jansson for their technical assistance.

The work presented in this report was funded by Roche Products (Australia) Pty Ltd. Dr. Krahn is the F. Norman Hughes Chair in Pharmacoeconomics, Faculty of Pharmacy, University of Toronto. The National Centre in HIV Epidemiology and Clinical Research is funded by the Australian Government Department of Health and Ageing and is affiliated with the Faculty of Medicine, The University of New South Wales.

For further information contact Dr. Rosie Thein or A/Prof David Wilson

National Centre in HIV Epidemiology and Clinical Research,

The University of New South Wales

CFI Building, Corner Boundary & West Streets, Darlinghurst NSW 2010 AUSTRALIA

Telephone: 02 9385 0900 Facsimile: 02 9385 0920

Email: rthein@nchecr.unsw.edu.au / dp.wilson@unsw.edu.au

Contents

Executive summary
Acknowledgements
Glossary
Introduction
Overview of methods
Key outcomes10
Epidemiological and economic evaluation of hepatitis C treatment scenarios in Australia 11
Epidemiological and economic evaluation of hepatitis C treatment scenarios in the Australian Capital Territory
Epidemiological and economic evaluation of hepatitis C treatment scenarios in New South Wales 24
Epidemiological and economic evaluation of hepatitis C treatment scenarios in the Northern Territory29
Epidemiological and economic evaluation of hepatitis C treatment scenarios in Queensland
Epidemiological and economic evaluation of hepatitis C treatment scenarios in South Australia
Epidemiological and economic evaluation of hepatitis C treatment scenarios in Tasmania
Epidemiological and economic evaluation of hepatitis C treatment scenarios in Victoria
Epidemiological and economic evaluation of hepatitis C treatment scenarios in Western Australia 54
Discussion
Limitations
References
Appendix A: Additional results and tables for Australia71
Appendix B: Additional results and tables for ACT75
Appendix C: Additional results and tables for NSW
Appendix D: Additional results and tables for NT
Appendix E: Additional results and tables for QLD
Appendix F: Additional results and tables for SA
Appendix G: Additional results and tables for TAS90
Appendix H: Additional results and tables for VIC
Appendix I: Additional results and tables for WA96
Appendix I: Methods and data sources

Glossary Abbreviations

CEA	Cost-effectiveness analysis
CUA	Cost-utility analysis
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
ICER	Incremental cost-effectiveness ratio
IDU(s)	Injecting drug user(s)
LY(s)	Life year(s)
MBS	Medical Benefits Schedule
NCHECR	National Centre in HIV Epidemiology and Clinical Research
PBS	Pharmaceutical Benefits Scheme
PEG-IFN	Pegylated interferon
QALY(s)	Quality-Adjusted-Life-Year(s)
SVR	Sustained virological response

Definition	of terms
------------	----------

Cost-effectiveness analysis	A technique in which the cost and effects of an intervention and an alternative are presented in a ratio of incremental cost to incremental effect.
Cost-effectiveness ratio	The incremental cost of using an intervention to obtain a unit of effectiveness (such as dollars per life-year gained) compared with an alternative, such as another treatment or no treatment.
Cost-utility analysis	A type of cost-effectiveness analysis that uses quality-adjusted life-years as the effectiveness end point. By convention, cost-utility analyses are often referred to as cost-effectiveness analyses; however, not all cost-effectiveness studies use cost-utility methods.
Cost-utility ratio	The incremental cost of an intervention to achieve one quality-adjusted life-year, compared with an alternate intervention.
Direct medical costs/health sector costs	The cost of medical resources consumed, such as physician visits, surgery, medical supplies, and hospitalisation. These costs are included in the numerator of the cost-effectiveness ratio.
Discounting	The conversion of future dollars spent and future health outcomes (such as life-years saved in 20 years from an intervention provided today) to their present value.
Effectiveness	The extent to which an intervention achieves health improvements, which can be measured in terms of such outcomes as cases of disease prevented, years of life saved, or quality-adjusted life-years saved
Health state	The condition of a person's health, including any disease, disability, and functional status
Incremental cost	The difference between the cost of an intervention and the cost of the comparator.
Incremental effect	The difference between the effect of an intervention and the effect of the comparator.
Incremental cost-effectiveness ratio	The incremental cost of an intervention divided by the incremental effectiveness.

Quality-adjusted life years	A method that assigns a preference weight to each health state, determines the time spent in each state, and estimates life expectancy as the sum of the products of each preference weight and time spent in each state.
Sensitivity analysis	Analysis that determines the impact of changing one or several variables in a model or analysis on the outcome of the analysis. A sensitivity analysis allows a range of plausible inputs to be considered when there is uncertainty about the true value of an input. An example is comparing results using a discount rate of 5% with result using rates of 0% and 3%.
Sustained virological response	Undetectable HCV RNA by a sensitive assay at the end of a 24-week follow-up period after completion of treatment. It is considered a 'cure' for the infection.
Time cost	The cost of the time a patient incurs while seeking or receiving care.
Utility	A person's preference for a particular health state or treatment outcome, measured by using the standard gamble technique, the time-tradeoff, or rating scale. The time-tradeoff and rating scale methods do not incorporate uncertainty into their questions and technically do not produce 'utilities'. Higher levels of utility indicate a greater preference.

Introduction

Hepatitis C virus infection

The public health burden of hepatitis C virus (HCV) infection is substantial, costing the Australian health care system approximately \$156 million in 2004/05 [1]. An estimated 284,000 people are currently infected with HCV in Australia [2], and liver disease caused by HCV infection is now the leading indication for liver transplantation [3]. Existing preventive and therapeutic efforts are inadequate. Approximately 10,000 new infections occur each year in Australia, primarily through sharing of injecting equipment by injecting drug users (IDUs) [4, 5]. Although some people are able to clear the hepatitis C virus from their bodies without treatment, most HCV infections become chronic or long-lasting [6, 7]. This can result in progressive liver disease, cirrhosis (advanced scarring of the liver), liver failure, and liver cancer (hepatocellular carcinoma (HCC)) [8]. There are various HCV strains (genotypes), each having different chances of achieving a sustained virological response (SVR) [9, 10].

Treatment for hepatitis C

Treatment for hepatitis C has improved in recent years with the shift from standard interferon and ribavirin therapy, prior to 2004, to pegylated interferon (PEG-IFN) and ribavirin combination therapy, which consists of weekly injections combined with daily oral medication. The treatment is administered over a period of either 24 or 48 weeks (depending on the strain of HCV), involves significant side effects and requires complex medical support. Depending on the strain of the virus, effective antiviral treatment has a cure rate of 40-50% of people with genotype 1 (the most common genotype in Australia) and 70-80% for non-1 genotypes [9, 11, 12].

Antiviral therapy is provided largely through the Highly Specialised Drugs Program (the S100 scheme) [3]. The number of prescriptions for hepatitis C treatment through the S100 scheme has tripled from around 1,150 in 2003 to around 3,500 in 2007 [3]. The number of prescriptions for treatment of chronic hepatitis C initially increased considerably following the removal in April 2006 of the requirement for biopsy-proven liver damage prior to treatment, and the increase continued in 2008 [2, 13].

The clinical benefits of successful treatment are considerable, including a low probability of HCV re-infection [14-16], reduced injury to the liver [17], halting the progression (and even regression) of severe liver disease [18], long-term improvement in health-related quality of life [19-21] and productivity [19, 21], reduced rates of HCC [22], and improved survival [8]. Modelling and economic evaluation can provide guidance to policymakers who want to ensure that scarce health care resources are used in the most effective and cost-effective manner possible.

This project aimed to examine the possible effects of increased rates of treatment, compared with current treatment rates, on the future health and economic burden of hepatitis C around Australia.

Overview of methods

A population-based dynamic mathematical model of HCV transmission was developed to describe the present HCV epidemic in Australia and to forecast the expected epidemic trends in the future due to changes in treatment rates for hepatitis C. The model describes IDUs and non-IDUs aged 15-64 in Australia. Non-IDUs considered were those who acquired HCV through routes other than injecting drug use. See Appendix J for a schematic diagram of the model structure and model input parameters.

The model tracked the shifts in the number of IDUs in the population, including the entry of new injectors, transitions between injecting status (for example, transition from occasional to regular), and the rate of cessation of injecting. The infection of IDUs with HCV was simulated based on injecting behaviour and mixing in the population. The model also tracked the natural history of disease progression for people infected with HCV. The model was used to estimate the number of people in each HCV health state, including important clinical endpoints such as liver failure, HCC, and liver transplant, as well as drug-related, disease-related, and background death rates.

The mathematical model was calibrated to be consistent with available epidemiologic data in Australia in terms of incidence and prevalence of HCV and to reflect clinical data on progression of HCV infection, that is, incidence of liver failure and HCC, the number of liver transplants and liver-related deaths, and the number of people treated in the year 2008 [2].

Separate analyses were carried out for Australia at a national level and for each State and Territory. State and Territory-specific demographic data and Australian population-specific epidemiologic and behavioural data were used to inform inputs for the State and Territory model simulations.

Economic analysis

A cost-effectiveness and cost-utility analysis was performed to compare the costs and benefits associated with current levels of treatment for hepatitis C with four alternative hepatitis C treatment scenarios in Australia and in each State and Territory. The economic analysis was that of a health sector perspective as well as the recommended societal perspective. Under the health sector costs, drug costs accrue to the federal government and the remaining costs accrue to the State government. The societal perspective considers all costs, regardless of who incurs them, including such components as patients/family time and out-of-pocket costs, and productivity losses and gains related to their illness or its treatment. The economic impact was modelled for three time horizons: from the year 2010 until 2013 (four-year time horizon); from the year 2010 until 2039 (30-year time horizon), and from the year 2010 until 2079 (lifetime time horizon). Costs were discounted at 3% and 5% annually. Separate economic analyses were carried out for Australia at a national level and for each State and Territory using population-based cost and utility data.

Hepatitis C treatment scenarios

Currently, approximately 3,500 people infected with hepatitis C (~1-2% of people infected with chronic hepatitis C) receive combination PEG-IFN and ribavirin therapy each year in Australia [3]. Treatment scenarios simulated in this study include:

- *Current treatment scenario*: no change from current practice;
- *Reduction scenario*: treatments decline to 2,000 from 2010 onwards;
- Increased scenario 1: treatments increase steadily to 6,000 per year from 2011 onwards;
- Increased scenario 2: treatments increase steadily to 8,000 per year from 2012 onwards;
- *Increased scenario 3*: treatments increase steadily to 12,000 per year from 2014 onwards.

Further details of methods are provided in Appendix J.

Key outcomes

The key health outcomes of the analysis include the number of new HCV cases averted, new liver failure cases averted, new HCC cases averted, liver transplant cases averted, the number of hepatitis C related deaths averted, and LYs gained. The years of potential life lost due to HCV was estimated using the life expectancy of the average Australian, adjusted for premature mortality associated with hepatitis C. Based on an Australian linkage study [23] and published literature [23], it was assumed that the average age at liver-related death was 65 (range, 61-70) years.

The key economic outcomes include total costs associated with hepatitis C care, QALYs, and incremental cost-effectiveness ratio (ICER), defined as the additional cost of a specific treatment strategy divided by its additional health benefit, expressed here as cost per SVR, LY gained or QALY gained. The ICER for an alternative treatment scenario was compared in reference to the next most effective option as well as to the current treatment scenario.

Epidemiological and economic evaluation of hepatitis C treatment scenarios in Australia

Key findings

Effect on new HCV cases in Australia over the period 2010-2039

Under levels of current treatment, where about 3,500 cases are treated each year, it was estimated that there would be approximately 11,700 new cases of hepatitis C in Australia in 2010, which would remain relatively stable over the next 30 years (Figure 1). The model estimated 228 new cases of liver failure, 121 new cases of HCC, 44 liver transplant cases, and 241 liver-related deaths in 2010. The annual number of these cases would increase each year under current conditions to an 11-13% increase by 2039.

Under the reduced treatment scenario, where treatment decreased from approximately 3,500 to 2,000 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%. It was estimated that there would be 1,288 additional cases of HCV (43 per year), 1,114 new cases of liver failure (37 per year), 535 new cases of HCC (18 per year), 174 cases receiving liver transplants (six per year), and 894 liver-related deaths (30 per year) relative to the current treatment scenario (Table 1).

If treatment rates are increased over the next five years from approximately 3,500 cases to 6,000, 8,000, or 12,000 cases per year (increased treatment scenarios 1, 2, and 3), the number of new cases of liver failure over 30 years would be expected to decrease by 7%, 14%, and 22%, respectively. Similarly, the number of new cases of HCC would decline relatively by 6%, 12%, and 20% and liver-related death by 3%, 9%, and 17%, respectively. Numbers of liver transplants would decline by 4%, 10%, and 18%, respectively over the period (Figure 1).

Compared with the current treatment scenario, it was estimated that there would be 2,621 to 8,360 fewer new cases of HCV (87-279 per year), 696 to 1,257 fewer new cases of liver failure (23-42 per year), 338 to 609 fewer new cases of HCC (11-20 per year), 111 to 200 fewer cases receiving liver transplants (4-7 per year), and 572 to 1,031 fewer liver-related deaths (19-34 per year) over the period, with increased treatment rates from 6,000 to 12,000.

12

	HCV treatment scenarios					
Description		incremental, relative to the current scen				
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3	
Life years lost / gained	153,414	-17,641	11,288	15,373	20,353	
Number of treatment gains (sustained virological response)		-26,280	24,840	36,886	53,776	
HCV cases / cases averted	350,465	-1,288	2,621	4,582	8,360	
Liver failure cases / cases averted	7,330	-1,114	696	948	1,257	
HCC cases / cases averted	3,908	-535	338	460	609	
HCV-related liver transplant cases / cases averted	1,424	-174	111	151	200	
Liver-related deaths / deaths averted	7,772	-894	572	779	1,031	

Table 1 Health	impact of he	natitis C treatment	t strategies in	Australia	2010-2039
	impact of ne	patitis C treatment	i su alegies in 7	rusuana,	2010-2039

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

Effect on life years in Australia over the period 2010-2039

Under the current treatment scenario, it was estimated that about 5,114 LYs per year (153,414 / 30) would be lost over the 30-year period due to liver-related death (Table 1).

Under the reduced scenario, 588 additional LYs would be lost each year (Table 1) and 1,122 fewer QALYs gained each year relative to the current treatment scenario.

According to increased treatment scenarios 1, 2, and 3, the incremental LYs gained relative to the current treatment scenario would be 376, 512 and 678 per year, respectively over the next 30 years (Table 1). Compared with the current treatment scenario, the respective incremental QALYs gained would be 1,174, 1,778 and 2,687 per year, respectively.

Cost of hepatitis C

Annual hepatitis C related health care costs (in 2008 Australian dollars) ranged from \$858 for diagnosed early stage of disease to \$120,017 for patients requiring a liver transplant (see Table 2). Patient and family costs associated with hepatitis C ranged from \$2,800 for early stage disease to \$13,700 for a liver transplant. Lifetime productivity costs per person with incident HCV were: \$35,143 (undiscounted); \$23,222 (3% discount); and \$19,624 (5% discount).

Description	Value (\$)	95% Cl* (\$)	Ref			
Annual costs of care						
Acute hepatitis C	858	832-884	+			
Pre-cirrhosis stage of chronic hepatitis C (fibrosis stage 0 to 3) - 1st year	858	832-884				
Pre-cirrhosis stage of chronic hepatitis C (fibrosis stage 0 to 3) - successive years	347	337-358				
Compensated cirrhosis (fibrosis stage 4)	887	861-914				
Decompensated cirrhosis (liver failure) - includes ascites, variceal haemorrhage and hepatic encephalopathy	13,363	12,762-13,964				
Hepatocellular carcinoma	17,872	14,655-21,089				
Liver transplant - 1st year	120,017	98,414-141,620				
Liver transplant - successive years	13,363	10,958-15,768	‡			
Costs of HCV treatment			§			
Treatment of acute HCV patients with pegylated interferon only or pegylated interferon and ribavirin - 24 weeks	10,782	10,458-11,105				
Treatment of chronic HCV patients with pegylated interferon and ribavirin - 24 weeks	10,829	10,458-11,105				
Treatment of chronic HCV patients with pegylated interferon and ribavirin - 48 weeks	18,835	18,270-19,400				
* Uncertainty in cost estimates was based on a Canadian population-based analysis of health care costs						

Table 2. Annual health care costs of hepatitis C (2008 Australian dollars)

* Uncertainty in cost estimates was based on a Canadian population-based analysis of health care costs associated with hepatitis C: a population-based analysis (Paterson, Krahn et al).

+Assumes annual health care costs of acute hepatitis C equivalent to costs of pre-cirrhosis stage of hepatitis C. However, it has been reported that the majority of acute hepatitis C cases are asymptomatic and about 25-30% of patients develop symptoms.

‡Costs of care for successive years of liver transplant assume the same as costs of care for liver failure. §Costs of HCV treatment include drugs and monitoring (including follow-up).

Costs are inflated to 2008 dollars, using the health component of consumer price index.

CI, confidence intervals; LB, lower bound; UB, upper bound; HCV, hepatitis C virus.

Effect on costs incurred through HCV infection in Australia over the period 2010-2039

Under the current scenario, an estimated \$476.6m in total costs would be incurred on average due to hepatitis C each year over the next 30 years (Table 3). Of these costs, \$102.4m (21%), \$250.8m (53%), and \$123.4m (26%) were attributed to health sector costs, patient and family costs, and productivity costs, respectively. Drug costs accounted for about \$46.1m (45%) of the total health sector costs on average each year.

Compared with the current treatment scenario, about \$2.6m additional total costs would accrue on average each year under the reduced treatment scenario over the next 30 years.

According to increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$3.5m, \$5.5m, and \$9.1m each year, respectively. If the health sector cost is increased by 50%, there would no longer be cost savings.

Table 4 shows the disaggregated 30-year projected costs by HCV disease state. The proportion of total costs attributable to people with cirrhosis and its sequelae and liver transplantation decreased from 20% to 16%, reflecting the slowing of disease progression in people on treatment and the reduction in the burden of disease.

Cost-effectiveness and cost-utility analysis

Table 5 summarises cost-effectiveness and cost-utility results. ICERs of each strategy are reported relative to the next best strategy. From a health sector perspective, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the next best strategy was \$17,028, \$16,627, and \$15,974 per QALY, respectively. Alternatively, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the current scenario were \$17,028, \$16,891 and \$16,577 per QALY, respectively.

See Appendix A for summaries of health and economic outcomes associated with hepatitis C treatment scenarios in Australia over the period 2010 to 2013 and 2010 to 2079.

	HCV treatment scenarios					
Description		Incremental \$, relative to the current scenario ⁺				
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3	
Costs: (undiscounte	d)					
Health sector costs [†]						
Drug costs*	2,579,598,071	-481,221,284	450,079,546	668,635,523	976,085,478	
Other costs	3,162,972,486	52,970,450	-39,196,255	-55,523,050	-80,616,803	
Total	5,742,570,557	-428,250,835	410,883,291	613,112,473	895,468,674	
Treated (% Total)	58%	51%	63%	66%	69%	
Patient/family costs ⁺	14,016,213,646	764,877,197	-796,867,402	-1,206,126,989	-1,822,030,663	
Treated	8%	6%	10%	11%	13%	
Productivity costs ⁺	12,316,512,629	45,261,697	-92,096,274	-161,027,723	-293,812,112	
Total costs	32,075,296,831	381,888,059	-478,080,385	-754,042,239	-1,220,374,101	
Costs: (3% discount	t)					
Health sector costs [†]						
Drug costs*	1,731,206,371	-318,240,762	311,181,018	465,323,714	687,173,778	
Other costs	2,120,637,444	18,151,944	-9,893,223	-12,734,668	-17,069,770	
Total	3,851,843,815	-300,088,818	301,287,796	452,589,046	670,104,008	
Patient/family costs ⁺	9,418,436,260	434,266,412	-460,634,158	-698,685,406	-1,058,883,441	
Productivity costs ⁺	5,478,586,116	22,153,521	-40,521,318	-69,532,345	-124,286,053	
Total costs	18,748,866,191	156,331,115	-199,867,680	-315,628,705	-513,065,486	
Costs: (5% discount	t)					
Health sector costs [†]						
Drug costs*	1,381,616,746	-250,333,924	251,777,236	378,053,646	562,219,723	
Other costs	1,691,381,588	6,187,729	150,892	1,904,980	4,677,705	
Total	3,072,998,334	-244,146,196	251,928,128	379,958,626	566,897,428	
Patient/family costs [†]	7,522,955,130	306,625,818	-329,286,393	-500,202,476	-759,806,941	
Productivity costs ⁺	3,702,290,839	15,638,426	-27,029,022	-45,859,703	-80,923,267	
Total costs ⁺	14,298,244,303	78,118,048	-104,387,287	-166,103,554	-273,832,780	

Table 3. Costs associated with hepatitis C treatment strategies in Australia, 2010-2039

⁺Incremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost.

*Pegylated interferon and ribavirin costs.

Costs are expressed in 2008 Australian dollars.

Table 4. Projected 30-year health care costs of hepatitis C by disease stage under alternative treatment scenarios in Australia, 2010-2039 (5% discount, 2008 Australian dollars)

	Hepatitis C treatment scenarios				
Description	Current scenario (% of total)	Reduction scenario (% of total)	Increased scenario 1 (% of total)	Increased scenario 2 (% of total)	Increased scenario 3 (% of total)
Acute hepatitis C	31,964,848 (2.3%)	32,083,040 (2.5%)	31,734,160 (2.1%)	31,562,590 (2.0%)	31,232,931 (1.9%)
Fibrosis stage 0	327,282,593 (23.5%)	267,999,082 (20.8%)	403,439,297 (27.0%)	445,840,537 (28.9%)	510,634,868 (31.7%)
Fibrosis stage 1	273,026,378 (19.6%)	229,177,369 (17.8%)	325,661,546 (21.8%)	352,960,981 (22.9%)	391,124,833 (24.7%)
Fibrosis stage 2	360,111,804 (25.8%)	338,731,253 (26.2%)	350,902,403 (23.5%)	338,649,850 (21.9%)	315,093,893 (19.5%)
Fibrosis stage 3	125,811,124 (9.0%)	128,520,231 (10.0%)	118,964,912 (8.0%)	115,641,105 (7.5%)	111,302,944 (6.9%)
Compensated cirrhosis	109,267,485 (7.8%)	111,415,896 (8.6%)	106,629,712 (7.1%)	105,443,451 (6.8%)	103,727,656 (6.4%)
Decompensated cirrhosis	87,758,051 (6.3%)	97,918,718 (7.6%)	81,236,202 (5.4%)	78,876,750 (5.1%)	76,002,114 (4.7%)
Hepatocellular carcinoma	22,989,765 (1.6%)	25,763,110 (2.0%)	21,216,742 (1.4%)	20,575,187 (1.3%)	19,792,931 (1.2%)
Liver transplant	56,924,343 (4.1%)	59,485,726 (4.6%)	55,173,999 (3.7%)	54,539,359 (3.5%)	53,775,041 (3.3%)
Total costs	1,395,136,390	1,291,094,426	1,494,958,974	1,544,089,810	1,612,687,210

Table 5. Cost-effectiveness and cost-utility analysis, Australia (2010-2039; 5% discount) from a health sector perspective: incremental cost per life year gained; incremental cost per sustained virological response achieved; and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	
Reduction scenario	2 828 852 138		(LT IOSI) ¹ 87 995	enect	(\$/[1])
Reduction scenario	2,020,032,130		07,555		
Current scenario	3,072,998,334	244,146,196	81,290	6,705	\$36,413
Increased scenario 1	3,324,926,462	251,928,128	76,843	4,448	\$56,642
Increased scenario 2	3,452,956,960	379,958,626	75,227	6,063	\$62,668
Increased scenario 3	3,639,895,763	566,897,428	73,269	8,021	\$70,676
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(SVR)	effect	(\$/SVR)
Reduction scenario	2,828,852,138		56,786		
Current scenario	3,072,998,334	244,146,196	70,539	13,753	17,753
Increased scenario 1	3,324,926,462	251,928,128	84,500	13,961	18,045
Increased scenario 2	3,452,956,960	379,958,626	91,499	20,961	18,127
Increased scenario 3	3,639,895,763	566,897,428	101,696	31,157	18,195
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect*	(\$/QALY)
Reduction scenario	2,828,852,138		6,228,117		
Current scenario	3,072,998,334	244,146,196	6,241,830	13,713	17,803
Increased scenario 1	3,324,926,462	251,928,128	6,256,625	14,795	17,028
Increased scenario 2	3,452,956,960	128,030,498	6,264,325	7,700	16,627
Increased scenario 3	3,639,895,763	186,938,803	6,276,028	11,703	15,974

⁺Years of potential life lost due to HCV was estimated using the life expectancy of the average

Australian, adjusted for premature mortality associated with hepatitis C.

⁺Incremental Quality-Adjusted Life Years (QALYs) gained.

§Incremental life years (LYs) gained.

^{*}ICER, incremental cost-effectiveness ratio of each strategy relative to the next best strategy; SVR, sustained virological response. Both costs and effects are discounted at 5%.

Epidemiological and economic evaluation of hepatitis C treatment scenarios in the Australian Capital Territory

The epidemiologic and economic trends under various HCV treatment scenarios for ACT would be similar to the national trends since Australian population-specific epidemiologic and behavioural data were used to inform inputs for the ACT model simulations.

Key findings

Effect on new HCV cases in ACT over the period 2010-2039

Under the current treatment scenario, where about 47 cases on average are treated each year, it was estimated that there would be approximately 160 new cases of hepatitis C in ACT in 2010, which would remain relatively stable over the next 30 years (Figure 2). The model estimated about three new cases of liver failure, one to two new cases of HCC, nil to one liver transplant cases, and three liver-related deaths in 2010. The annual number of these cases would increase each year under current conditions to an increase of between 11-13% by 2039.

Under the reduced treatment scenario, whereby treatment decreased from approximately 47 to 26 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%. It was estimated that there would be 17 additional HCV cases, 15 new cases of liver failure, seven new cases of HCC, two cases receiving liver transplants, and 105 liver-related deaths relative to current treatment scenario (Table 6).

If treatment rates are increased over the next five years from approximately 47 cases to 78, 103, or 157 cases per year (increased treatment scenarios 1, 2, and 3), it was estimated that there would be 35 to 113 fewer new HCV cases, nine to 17 fewer new cases of liver failure, five to eight fewer new cases of HCC, one to three fewer cases receiving liver transplants, and eight to 14 fewer liver-related deaths over the 30-year period relative to the current treatment scenario (Table 6).

Figure 2: Expected epidemiological outcomes associated with changes in HCV treatment rates in Australian Capital Territory

Increased treatment scenario 3

	HCV treatment scenarios					
Description		increme	ntal, relative t	al, relative to the current scenario*		
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3	
Life years lost / gained	2,080	-239	152	208	276	
Number of treatment gains (Sustained virological response)		-356	336	500	729	
HCV cases / cases averted	4,752	-17	35	62	113	
Liver failure cases / cases averted	99	-15	9	13	17	
HCC cases / cases averted	53	-7	5	6	8	
HCV-related liver transplant cases / cases averted	19	-2	1	2	3	
Liver-related deaths / deaths averted	105	-12	8	11	14	

	Table 6. Health ir	npact of hepati	tis C treatment s	strategies in ACT	, 2010-2039
--	--------------------	-----------------	-------------------	-------------------	-------------

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

Effect on life years in ACT over the period 2010-2039 (undiscounted)

Under the current treatment scenario, it was estimated that 2,080 LYs (69 per year) would be lost over the 30-year period due to liver-related death (Table 7).

About 239 additional LYs (eight per year) would be lost and 456 fewer QALYs (15 per year) would be gained under the reduced treatment scenario relative to the current treatment scenario.

Under the increased treatment scenarios 1, 2, and 3, the incremental LYs gained relative to the current treatment scenario would be 152, 208, and 276, respectively (range, five to nine per year) over the next 30 years (Table 6). Compared with the current treatment scenario, the respective incremental QALYs gained would be 475, 723, and 1,093 (range, 16-36 per year).

Effect on costs incurred through HCV infection in ACT over the period 2010-2039 (5% discount)

Under the current scenario, an estimated \$6.5m in total costs would be incurred on average due to hepatitis C each year over the next 30 years (Table 7). Of these costs, \$1.4m, \$3.4m, and \$1.7m, were attributed to health sector costs, patient and family costs, and productivity costs, respectively. Drug costs accounted for about \$624,500 of the total health sector costs on average each year.

Compared with the current treatment scenario, about \$35,300 additional total costs would accrue on average each year under the reduced treatment scenario over the next 30 years.

Under the increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$46,300, \$75,000, and \$124,000 each year, respectively.

	HCV treatment scenarios					
Description		Incren	nental \$, relative	to the current sc	enario ⁺	
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3	
Costs: (undiscounted)						
Health sector costs ⁺						
Drug costs*	34,978,705	-6,525,088	6,099,673	9,066,631	13,235,135	
Other costs	42,889,180	717,951	-522,581	-752,114	-1,094,024	
Total	77,867,885	-5,807,137	5,577,092	8,314,517	12,141,111	
Treated (% Total)	58%	51%	63%	66%	69%	
Patient/family costs ⁺	190,056,227	10,370,721	-10,755,484	-16,350,372	-24,710,112	
Treated	8%	6%	10%	11%	13%	
Productivity costs ⁺	167,008,878	613,739	-1,245,369	-2,183,079	-3,984,433	
Total costs	434,932,990	5,177,323	-6,423,761	-10,218,933	-16,553,434	
Costs: (3% discount)						
Health sector $costs^{\dagger}$						
Drug costs*	23,474,726	-4,315,035	4,212,416	6,309,402	9,317,954	
Other costs	28,755,357	245,950	-128,890	-172,206	-232,033	
Total	52,230,082	-4,069,086	4,083,526	6,137,196	9,085,921	
Patient/family costs ⁺	127,711,557	5,887,920	-6,208,836	-9,470,681	-14,361,130	
Productivity costs ⁺	74,288,318	300,357	-547,141	-942,608	-1,685,567	
Total costs	254,229,957	2,119,192	-2,672,451	-4,276,093	-6,960,776	
Costs: (5% discount)						
Health sector $costs^{\dagger}$						
Drug costs*	18,734,378	-3,394,206	3,405,280	5,125,876	7,623,785	
Other costs	22,934,745	83,774	5,692	26,174	62,998	
Total	41,669,122	-3,310,432	3,410,972	5,152,050	7,686,783	
Patient/family costs ⁺	102,009,327	4,157,241	-4,433,718	-6,779,819	-10,305,300	
Productivity costs ⁺	50,202,196	212,009	-364,537	-621,662	-1,097,534	
Total costs ⁺	193,880,646	1,058,818	-1,387,283	-2,249,431	-3,716,050	

Table 7. Costs associated wit	h hepatitis	C treatment strategies	in ACT, 2010-2039
-------------------------------	-------------	------------------------	-------------------

[†]Incremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost.

*Pegylated interferon and ribavirin costs.

Costs are expressed in 2008 Australian dollars.

Cost-effectiveness and cost-utility analysis

Table 8 summarises cost-effectiveness and cost-utility results. ICERs of each strategy are reported relative to the next best strategy. Alternatively, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the current scenario were \$17,119, \$16,897 and \$16,572 per QALY, respectively.

Table 8. Cost-effectiveness and cost-utility analysis, ACT (2010-2039; 5% discount) from a health sector perspective: incremental cost per life year gained; incremental cost per sustained virological response achieved; and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect (LY lost) [‡]	Increased effect [§]	ICER* (\$/LY)
Reduction scenario	38,358,691		1,193		
Current scenario	41,669,122	3,310,432	1,102	91	\$36,418
Increased scenario 1	45,080,095	3,410,972	1,042	60	\$56,978
Increased scenario 2	46,821,172	5,152,050	1,020	82	\$62,693
Increased scenario 3	49,355,905	7,686,783	993	109	\$70,655
Treatment scenario	Cost (\$)	Increased cost	Effect (SVR)	Increased effect	ICER* (\$/SVR)
Reduction scenario	38,358,691		770		
Current scenario	41,669,122	3,310,432	956	186	17,754
Increased scenario 1	45,080,095	3,410,972	1,145	188	18,107
Increased scenario 2	46,821,172	5,152,050	1,241	284	18,132
Increased scenario 3	49,355,905	7,686,783	1,379	423	18,191
Treatment scenario	Cost (\$)	Increased cost	Effect (QALY)	Increased effect ⁺	ICER* (\$/QALY)
Reduction scenario	38,358,691		84,452		
Current scenario	41,669,122	3,310,432	84,638	186	17,806
Increased scenario 1	45,080,095	3,410,972	84,837	199	17,119
Increased scenario 2	46,821,172	1,741,078	84,943	106	16,478
Increased scenario 3	49,355,905	2,534,733	85,101	159	15,950

^{*}Years of potential life lost due to HCV was estimated using the life expectancy of the average Australian, adjusted for premature mortality associated with hepatitis C.

[†]Incremental Quality-Adjusted Life Years (QALYs) gained.

[§]Incremental life years (LYs) gained.

*ICER, incremental cost-effectiveness ratio of each strategy relative to the next best strategy; SVR, sustained virological response. Both costs and effects are discounted at 5%.

See Appendix B for summaries of health and economic outcomes associated with hepatitis C treatment scenarios in ACT over the period 2010 to 2013 and 2010 to 2079.

Epidemiological and economic evaluation of hepatitis C treatment scenarios in New South Wales

The epidemiologic and economic trends under various HCV treatment scenarios for NSW would be similar to the national trends since Australian population-specific epidemiologic and behavioural data were used to inform inputs for the NSW model simulations.

Key findings

Effect on new HCV cases in NSW over the period 2010-2039

Under the current treatment scenario, where about 1,044 cases on average are treated each year, it was estimated that there would be approximately 3,557 new cases of hepatitis C in NSW in 2010, which would remain relatively stable over the next 30 years (Figure 3). The model estimated about 69 new cases of liver failure, 37 new cases of HCC, 13 cases receiving liver transplants, and 73 liver-related deaths in 2010. The annual number of these cases would increase each year under current conditions to an 11-13% increase by 2039.

Under the reduced treatment scenario, where treatment decreased from approximately 1,044 to 618 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%. It was estimated that there would be 391 additional HCV cases, 337 new cases of liver failure, 162 new cases of HCC, 53 cases receiving liver transplants, and 271 liver-related deaths relative to current treatment scenario (Table 9).

If treatment rates are increased over the next five years from approximately 1,100 cases to 1,800, 2,300, or 3,500 cases per year (increased treatment scenarios 1, 2, and 3), it was estimated that there would be 795 to 2,535 fewer new HCV cases, 211 to 381 fewer new cases of liver failure, 102 to 185 fewer new cases of HCC, 34 to 61 fewer cases receiving liver transplants, and 173 to 313 fewer liver-related deaths over the 30-year period relative to the current treatment scenario (Table 9).

Figure 3: Expected epidemiological outcomes associated with changes in HCV treatment rates in New South Wales

	HCV treatment scenarios						
Description		incremental, relative to the current s					
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3		
Life years lost / gained	46,510	-5,344	3,423	4,659	6,171		
Number of treatment gains (Sustained virological response)		-7,965	7,531	11,181	16,304		
HCV cases / cases averted	106,250	-391	795	1,389	2,535		
Liver failure cases / cases averted	2,222	-337	211	287	381		
HCC cases / cases averted	1,185	-162	102	139	185		
HCV-related liver transplant cases / cases averted	432	-53	34	46	61		
Liver-related deaths / deaths averted	2,356	-271	173	236	313		

Table 9. Health impact of hepatitis C treatment strategies in NSW, 2010-2039

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

Effect on life years in NSW over the period 2010-2039 (undiscounted)

Under the current treatment scenario, it was estimated that 46,510 LYs (1,550 per year) would be lost over the 30-year period due to liver-related death (Table 9).

Under the reduced treatment scenario, about 5,344 additional LYs (178 per year) would be lost and 10,199 fewer QALYs (340 per year) would be gained under the reduced treatment scenario relative to the current treatment scenario.

According to the increased treatment scenarios 1, 2, and 3, the incremental LYs gained relative to the current treatment scenario would be 3,423, 4,659, and 6,171, respectively (114-206 per year) over the next 30 years (Table 9). Compared with the current treatment scenario, the respective incremental QALYs gained would be 10,676, 16,164, and 24,442, respectively (356-815 per year).

Effect on costs incurred through HCV infection in NSW over the period 2010-2039 (5% discount)

Under the current scenario, an estimated \$144.5m in total costs would be incurred on average due to hepatitis C each year over the next 30 years (Table 10). Of these costs, \$31m, \$76m, and \$37m, were attributed to health sector costs, patient and family costs, and productivity costs, respectively. Drug costs accounted for about \$14m (45%) of the total health sector costs on average each year.

Compared with the current treatment scenario, about \$787,100 additional total costs would accrue on average each year under the reduced treatment scenario over the next 30 years.

Under increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$1m, \$2m, and \$3m each year, respectively.

	HCV treatment scenarios					
Description		Incren	nental \$, relative	e to the current sc	enario ⁺	
	Current	Reduction	Increased	Increased	Increased	
Costs: (undiscounted)	scenario	scenario	scenario i	scenario 2	scenario 5	
Health sector costs [†]						
Drug costs*						
Other costs	/82,051,413	-145,858,222	136,4/3,088	202,/08,836	295,909,906	
Total	958,912,804	16,024,453	-11,889,896	-16,810,/11	-24,453,/60	
	1,740,964,217	-129,833,769	124,583,192	185,898,125	271,456,146	
Treated (% Total)	58%	51%	63%	66%	69%	
Patient/family costs ⁺	4,249,264,614	231,723,341	-241,638,219	-365,533,698	-552,434,439	
Treated	8%	6%	10%	11%	13%	
Productivity costs ⁺	3,733,973,985	13,724,125	-27,923,726	-48,806,872	-89,079,910	
Total costs	9,724,202,816	115,613,697	-144,978,752	-228,442,445	-370,058,202	
Costs: (3% discount)						
Health sector costs ⁺						
Drug costs*	524,846,271	-96,438,909	94,366,506	141,060,779	208,326,880	
Other costs	642,909,777	5,483,847	-3,001,716	-3,847,112	-5,183,772	
Total	1,167,756,048	-90,955,062	91,364,790	137,213,668	203,143,107	
Patient/family costs ⁺	2,855,366,976	131,535,737	-139,689,344	-211,724,913	-321,060,612	
Productivity costs ⁺	1,660,933,661	6,713,731	-12,287,498	-21,073,158	-37,683,391	
Total costs	5,684,056,684	47,294,406	-60,612,051	-95,584,403	-155,600,896	
Costs: (5% discount)						
Health sector costs ⁺						
Drug costs*	418,861,915	-75,848,357	76,358,211	114,598,690	170,447,499	
Other costs	512,772,963	1,863,218	45,238	587,371	1,411,443	
Total	931,634,879	-73,985,139	76,403,449	115,186,061	171,858,942	
Patient/family costs*	2,280,718,329	92,859,261	-99,862,444	-151,566,000	-230,384,390	
Productivity costs ⁺	1,122,417,676	4,737,745	-8,196,796	-13,897,671	-24,536,574	
Total costs ⁺	4,334,770,883	23,611,867	-31,655,791	-50,277,610	-83,062,021	

Table 10. Costs associated with hepatitis C treatment strategies in NSW, 2010-2039

[†]Incremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost.

*Pegylated interferon and ribavirin costs.

Costs are expressed in 2008 Australian dollars.

Cost-effectiveness and cost-utility analysis

Table 11 summarises cost-effectiveness and cost-utility results. ICERs of each strategy are reported relative to the next best strategy. Alternatively, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the current scenario were \$17,028, \$16,898 and \$16,574 per QALY, respectively.

Table 11. Cost-effectiveness and cost-utility analysis, NSW (2010-2039; 5% discount) from a health sector perspective: incremental cost per life year gained; incremental cost per sustained virological response achieved; and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(LY lost) [‡]	effect [§]	(\$/LY)
Reduction scenario	857,649,740		26,675		
Current scenario	931,634,879	73,985,139	24,645	2,030	\$36,439
Increased scenario 1	1,008,038,327	76,403,449	23,296	1,349	\$56,640
Increased scenario 2	1,046,820,939	115,186,061	22,807	1,837	\$62,699
Increased scenario 3	1,103,493,821	171,858,942	22,212	2,432	\$70,661
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(SVR)	effect	(\$/SVR)
Reduction scenario	857,649,740		17,219		
Current scenario	931,634,879	73,985,139	21,385	4,166	17,759
Increased scenario 1	1,008,038,327	76,403,449	25,619	4,234	18,046
Increased scenario 2	1,046,820,939	115,186,061	27,737	6,352	18,133
Increased scenario 3	1,103,493,821	171,858,942	30,832	9,447	18,192
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect*	(\$/QALY)
Reduction scenario	857,649,740		1,888,170		
Current scenario	931,634,879	73,985,139	1,892,323	4,153	17,815
Increased scenario 1	1,008,038,327	76,403,449	1,896,810	4,487	17,028
Increased scenario 2	1,046,820,939	38,782,612	1,899,139	2,329	16,649
Increased scenario 3	1,103,493,821	56,672,881	1,902,692	3,553	15,951

^{*}Years of potential life lost due to HCV was estimated using the life expectancy of the average Australian, adjusted for premature mortality associated with hepatitis C.

⁺Incremental Quality-Adjusted Life Years (QALYs) gained.

§Incremental life years (LYs) gained.

*ICER, incremental cost-effectiveness ratio of each strategy relative to the next best strategy; SVR, sustained virological response. Both costs and effects are discounted at 5%.

See Appendix C for summaries of health and economic outcomes associated with hepatitis C treatment scenarios in NSW over the period 2010 to 2013 and 2010 to 2079.

Epidemiological and economic evaluation of hepatitis C treatment scenarios in the Northern Territory

The epidemiologic and economic trends under various HCV treatment scenarios for NT would be similar to the national trends since Australian population-specific epidemiologic and behavioural data were used to inform inputs for the NT model simulations.

Key findings

Effect on new HCV cases in NT over the period 2010-2039

Under the current treatment scenario, where about 36 cases on average are treated each year, it was estimated that there would be approximately 121 new cases of hepatitis C in NT in 2010, which would remain relatively stable over the next 30 years (Figure 4). The model estimated about two new cases of liver failure, one to two new cases of HCC, nil to one case receiving liver transplant, and two to three liver-related deaths in 2010. The annual number of these cases would increase each year under current conditions to an increase of 11-13% by 2039.

Under the reduced treatment scenario, where treatment decreased from approximately 36 to 21 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%. It was estimated that there would be 13 additional HCV cases, 11 new cases of liver failure, six new cases of HCC, two cases receiving liver transplants, and nine liver-related deaths relative to current treatment scenario (Table 12).

If treatment rates are increased over the next five years from approximately 36 cases to 60, 78, and 120 cases per year (increased treatment scenarios 1, 2, and 3), it was estimated that there would be 27 to 86 fewer new HCV cases, seven to 13 fewer new cases of liver failure, three to six fewer new cases of HCC, one to two fewer cases receiving liver transplants, and six to 11 fewer liver-related deaths over the 30-year period relative to the current treatment scenario (Table 12).

Figure 4: Expected epidemiological outcomes associated with changes in HCV treatment rates in the Northern Territory — Current treatment scenario — Reduced treatment scenario 1 — Increased treatment scenario 2 — Increased treatment scenario 3

National Centre in HIV Epidemiology and Clinical Research

	HCV treatment scenarios						
Description		incremental, relative to the current scenario*					
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3		
Life years lost / gained	1,583	-182	116	159	210		
Number of treatment gains (Sustained virological response)		-271	256	381	555		
HCV cases / cases averted	3,617	-13	27	47	86		
Liver failure cases / cases averted	76	-11	7	10	13		
HCC cases / cases averted	40	-6	3	5	6		
HCV-related liver transplant cases / cases averted	15	-2	1	2	2		
Liver-related deaths / deaths averted	80	-9	6	8	11		

Table 12. Health im	pact of hepatitis	C treatment strategies	in NT, 2010-2039

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

Effect on life years in NT over the period 2010-2039 (undiscounted)

Under the current treatment scenario, it was estimated that 1,583 LYs (53 per year) would be lost over the 30-year period due to liver-related death in NT (Table 12).

Under the reduced treatment scenario, about 182 additional LYs (6 per year) would be lost and 347 fewer QALYs (12 per year) would be gained under the reduced treatment scenario relative to the current treatment scenario.

According to the increased treatment scenarios 1, 2, and 3, the incremental LYs gained relative to the current treatment scenario would be 116,159, and 210, respectively (four to seven per year) over the next 30 years (Table 12). Compared with the current treatment scenario, the respective incremental QALYs gained would be 363, 551, and 832, respectively (12-28 per year).

Effect on costs incurred through HCV infection in NT over the period 2010-2039 (5% discount)

Under the current scenario, an estimated \$5m in total costs would be incurred on average due to hepatitis C each year over the next 30 years (Table 13). Of these costs, \$1m, \$3m, and \$1m, were attributed to health sector costs, patient and family costs, and productivity costs, respectively. Drug costs accounted for about \$475,300 (45%) of the total health sector costs on average each year.

Compared with the current treatment scenario, about \$26,700 additional total costs would accrue on average each year under the reduced treatment scenario over the next 30 years.

Under increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$36,000, \$57,000, and \$94,000 each year, respectively.

	HCV treatment scenarios					
Description		Incren	nental \$, relative	to the current sc	enario ⁺	
	Current	Reduction	Increased	Increased	Increased	
Costs: (undiscounted)	scenario	scenario	scenario 1	scenario 2	scenario 3	
	[[
Health sector costs						
Drug costs*	26,622,411	-4,963,764	4,645,196	6,900,914	10,074,148	
Other costs	32,643,070	544,047	-404,221	-573,679	-830,492	
Total	59,265,481	-4,419,717	4,240,975	6,327,234	9,243,657	
Treated (% Total)	58%	51%	63%	66%	69%	
Patient/family costs ⁺	144,652,498	7,880,487	-8,222,500	-12,451,386	-18,796,416	
Treated	8%	6%	10%	11%	13%	
Productivity costs ⁺	127,111,035	467,041	-950,358	-1,662,180	-3,031,358	
Total costs	331,029,014	3,927,811	-4,931,883	-7,786,332	-12,584,118	
Costs: (3% discount)						
Health sector costs ⁺						
Drug costs*	17,866,694	-3,281,073	3,211,567	4,802,957	7,091,751	
Other costs	21,885,773	185,879	-101,902	-131,805	-175,195	
Total	39,752,467	-3,095,194	3,109,665	4,671,152	6,916,556	
Patient/family costs ⁺	97,201,754	4,472,071	-4,752,826	-7,213,492	-10,922,266	
Productivity costs ⁺	56,541,085	228,389	-418,131	-717,811	-1,282,153	
Total costs	193,495,305	1,605,266	-2,061,292	-3,260,151	-5,287,863	
Costs: (5% discount)						
Health sector costs ⁺						
Drug costs*	14,258,799	-2,579,995	2,598,432	3,902,424	5,801,849	
Other costs	17,455,689	62,905	1,712	19,407	49,005	
Total	31,714,488	-2,517,090	2,600,144	3,921,831	5,850,853	
Patient/family costs ⁺	77,639,695	3,156,437	-3,397,445	-5,164,643	-7,836,550	
Productivity costs ⁺	38,209,052	161,124	-278,897	-473,466	-834,737	
Total costs ⁺	147,563,235	800,472	-1,076,198	-1,716,278	-2,820,434	

Table 13. Costs associated with hepatitis C treatment strategies in NT, 2010-2039

⁺Incremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost.

*Pegylated interferon and ribavirin costs.

Costs are expressed in 2008 Australian dollars.

Cost-effectiveness and cost-utility analysis

Table 14 summarises cost-effectiveness and cost-utility results. ICERs of each strategy are reported relative to the next best strategy. Alternatively, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the current scenario were \$17,033, \$16,885 and \$16,588 per QALY, respectively.

Table 14. Cost-effectiveness and cost-utility analysis, NT (2010-2039; 5% discount) from a health sector perspective: incremental cost per life year gained; incremental cost per sustained virological response achieved; and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect (LY lost) [‡]	Increased effect [§]	ICER* (\$/LY)
Reduction scenario	29,197,398		908		
Current scenario	31,714,488	2,517,090	839	69	\$36,473
Increased scenario 1	34,314,632	2,600,144	793	46	\$56,660
Increased scenario 2	35,636,319	3,921,831	776	63	\$62,645
Increased scenario 3	37,565,341	5,850,853	756	83	\$70,727
Treatment scenario	Cost (\$)	Increased cost	Effect (SVR)	Increased effect	ICER* (\$/SVR)
Reduction scenario	29,197,398		586		
Current scenario	31,714,488	2,517,090	728	142	17,766
Increased scenario 1	34,314,632	2,600,144	872	144	18,049
Increased scenario 2	35,636,319	3,921,831	944	216	18,124
Increased scenario 3	37,565,341	5,850,853	1,049	321	18,203
Treatment scenario	Cost (\$)	Increased cost	Effect (QALY)	Increased effect ⁺	ICER* (\$/QALY)
Reduction scenario	29,197,398		64,277		
Current scenario	31,714,488	2,517,090	64,418	141	17,830
Increased scenario 1	34,314,632	2,600,144	64,571	153	17,033
Increased scenario 2	35,636,319	1,321,687	64,650	80	16,602
Increased scenario 3	37,565,341	1,929,022	64,771	120	16,015

^{*}Years of potential life lost due to HCV was estimated using the life expectancy of the average Australian, adjusted for premature mortality associated with hepatitis C.

[†]Incremental Quality-Adjusted Life Years (QALYs) gained.

[§]Incremental life years (LYs) gained.

*ICER, incremental cost-effectiveness ratio of each strategy relative to the next best strategy; SVR, sustained virological response. Both costs and effects are discounted at 5%.

See Appendix D for summaries of health and economic outcomes associated with hepatitis C treatment scenarios in the Northern Territory over the period 2010 to 2013 and 2010 to 2079.

Epidemiological and economic evaluation of hepatitis C treatment scenarios in Queensland

The epidemiologic and economic trends under various HCV treatment scenarios for QLD would be similar to the national trends since Australian population-specific epidemiologic and behavioural data were used to inform inputs for the QLD model simulations.

Key findings

Effect on new HCV cases in QLD over the period 2010-2039

Under the current treatment scenario, where about 778 cases on average are treated each year, it was estimated that there would be approximately 2,652 new cases of hepatitis C in QLD in 2010, which would remain relatively stable over the next 30 years (Figure 5). The model estimated about 52 new cases of liver failure, 27 new cases of HCC, ten cases receiving liver transplants, and 54 liver-related deaths in 2010. The annual number of these cases would increase each year under current conditions to an 11-13% increase by 2039.

Under the reduced treatment scenario, where treatment decreased from approximately 778 to 461 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%. It was estimated that there would be 291 additional HCV cases, 252 new cases of liver failure, 121 new cases of HCC, 39 cases receiving liver transplants, and 202 liver-related deaths relative to current treatment scenario (Table 15).

If treatment rates are increased over the next five years from approximately 778 cases to 1,300, 1,700, and 2,600 cases per year (increased treatment scenarios 1, 2, and 3), it was estimated that there would be 593 to 1,890 fewer new HCV cases, 157 to 284 fewer new cases of liver failure, 76 to 138 fewer new cases of HCC, 25 to 45 fewer cases receiving liver transplants, and 129 to 233 fewer liver-related deaths over the 30-year period relative to the current treatment scenario (Table 15).

----- Increased treatment scenario 3

	HCV treatment scenarios					
Description		incremer	ntal, relative to	o the current	scenario*	
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3	
Life years lost / gained	34,678	-3,991	2,553	3,474	4,602	
Number of treatment gains (Sustained virological response)		-5,943	5,616	8,337	12,157	
HCV cases / cases averted	79,220	-291	593	1,036	1,890	
Liver failure cases / cases averted	1,657	-252	157	214	284	
HCC cases / cases averted	883	-121	76	104	138	
HCV-related liver transplant cases / cases averted	322	-39	25	34	45	
Liver-related deaths / deaths averted	1,757	-202	129	176	233	

Table 15. Health	impact of he	patitis C treatment	t strategies in Q	LD, 2010-2039
------------------	--------------	---------------------	-------------------	---------------

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

Effect on life years in QLD over the period 2010-2039 (undiscounted)

Under the current treatment scenario, it was estimated that 34,678 LYs (1,156 per year) would be lost over the 30-year period due to liver-related death in QLD (Table 15).

Under the reduced treatment scenario, about 3,991 additional LYs (133 per year) would be lost and 7,615 fewer QALYs (254 per year) would be gained under the reduced treatment scenario relative to the current treatment scenario.

According to the increased treatment scenarios 1, 2, and 3, the incremental LYs gained relative to the current treatment scenario would be 2,553, 3,474, and 4,602, respectively (85-153 per year) over the next 30 years (Table 15). Compared to current treatment scenario, the respective incremental QALYs gained would be 7,963, 12,052, and 18,228, respectively (265-608 per year).

Effect on costs incurred through HCV infection in QLD over the period 2010-2039 (5% discount)

Under the current scenario, an estimated \$108m in total costs would be incurred on average due to hepatitis C each year over the next 30 years (Table 16). Of these costs, \$23m, \$57m, and \$28m, were attributed to health sector costs, patient and family costs, and productivity costs, respectively. Drug costs accounted for about \$10m (45%) of the total health sector costs on average each year.

Compared with the current treatment scenario, about \$590,400 additional total costs would accrue on average each year under the reduced treatment scenario over the next 30 years.

Under increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$788,400, \$1m, and \$2m each year, respectively.

	HCV treatment scenarios							
Description		Incren	nental \$, relative	e to the current sc	enario ⁺			
	Current	Reduction	Increased	Increased	Increased			
Costs: (undiscounted)	scenario	SCENario	scenario i	scenario 2	scenario 5			
Health sector costs ⁺								
Drug costs*	583 099 281	-108 805 128	101 747 077	151 141 534	220 622 973			
Other costs	714 966 998	11 997 496	-8 877 740	-12 535 893	-18 249 519			
Total	1 298 066 279	-96 807 632	92 869 337	138 605 641	202 373 454			
Treated (% Total)	58%	51%	63%	66%	69%			
Patient/family costs ⁺	3.168.262.245	173.029.907	-180.226.026	-272.558.531	-411.981.802			
Treated	8%	6%	10%	11%	13%			
Productivity costs ⁺	2,784,058,111	10,230,770	-20,824,450	-36,392,324	-66,428,436			
Total costs	7,250,386,635	86,453,044	-108,181,139	-170,345,214	-276,036,785			
Costs: (3% discount)	, , , ,	, ,	, ,	, ,	, ,			
Health sector costs ⁺								
Drug costs*	391,326,550	-71,970,833	70,357,078	105,177,610	155,329,046			
Other costs	479,354,621	4,116,117	-2,246,574	-2,869,385	-3,875,879			
Total	870,681,170	-67,854,716	68,110,504	102,308,226	151,453,168			
Patient/family costs ⁺	2,128,968,666	98,260,008	-104,197,969	-157,874,393	-239,448,744			
Productivity costs ⁺	1,238,394,714	5,009,468	-9,164,281	-15,713,005	-28,102,646			
Total costs	4,238,044,550	35,414,760	-45,251,746	-71,279,173	-116,098,222			
Costs: (5% discount)								
Health sector costs ⁺								
Drug costs*	312,304,375	-56,623,305	56,932,202	85,447,832	127,089,843			
Other costs	382,324,410	1,407,028	27,084	437,330	1,044,202			
Total	694,628,785	-55,216,277	56,959,287	85,885,162	128,134,045			
Patient/family costs ⁺	1,700,509,162	69,390,583	-74,495,983	-113,017,896	-171,830,683			
Productivity costs ⁺	836,876,084	3,537,212	-6,113,759	-10,362,709	-18,299,117			
Total costs ⁺	3,232,014,031	17,711,518	-23,650,455	-37,495,444	-61,995,755			

Table 16. Costs associated with hepatitis C treatment strategies in QLD, 2010-2039

⁺Incremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost.

*Pegylated interferon and ribavirin costs.

Costs are expressed in 2008 Australian dollars.

Cost-effectiveness and cost-utility analysis

Table 17 summarises cost-effectiveness and cost-utility results. ICERs of each strategy are reported relative to the next best strategy. Alternatively, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the current scenario were \$17,017, \$16,897 and \$16,568 per QALY, respectively.

Table 17. Cost-effectiveness and cost-utility analysis, QLD (2010-2039; 5% discount) from a health sector perspective: incremental cost per life year gained; incremental cost per sustained virological response achieved; and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(LY lost) [‡]	effect [§]	(\$/LY)
Reduction scenario	639,412,508		19,892		
Current scenario	694,628,785	55,216,277	18,375	1,517	\$36,389
Increased scenario 1	751,588,072	56,959,287	17,369	1,006	\$56,604
Increased scenario 2	780,513,947	85,885,162	17,005	1,370	\$62,695
Increased scenario 3	822,762,830	128,134,045	16,561	1,814	\$70,635
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(SVR)	effect	(\$/SVR)
Reduction scenario	639,412,508		12,834		
Current scenario	694,628,785	55,216,277	15,945	3,111	17,747
Increased scenario 1	751,588,072	56,959,287	19,102	3,158	18,038
Increased scenario 2	780,513,947	85,885,162	20,681	4,737	18,132
Increased scenario 3	822,762,830	128,134,045	22,990	7,045	18,187
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect*	(\$/QALY)
Reduction scenario	639,412,508		1,407,817		
Current scenario	694,628,785	55,216,277	1,410,920	3,103	17,793
Increased scenario 1	751,588,072	56,959,287	1,414,267	3,347	17,017
Increased scenario 2	780,513,947	28,925,875	1,416,003	1,736	16,666
Increased scenario 3	822,762,830	42,248,883	1,418,654	2,651	15,937

⁺Years of potential life lost due to HCV was estimated using the life expectancy of the average Australian, adjusted for premature mortality associated with hepatitis C.

⁺Incremental Quality-Adjusted Life Years (QALYs) gained.

§Incremental life years (LYs) gained.

*ICER, incremental cost-effectiveness ratio of each strategy relative to the next best strategy; SVR, sustained virological response. Both costs and effects are discounted at 5%.

See Appendix E for summaries of health and economic outcomes associated with hepatitis C treatment scenarios in QLD over the period 2010 to 2013 and 2010 to 2079.

The epidemiologic and economic trends under various HCV treatment scenarios for South Australia would be similar to the national trends since Australian population-specific epidemiologic and behavioural data were used to inform inputs for the South Australia model simulations.

Key findings

Effect on new HCV cases in South Australia over the period 2010-2039

Under the current treatment scenario, where about 263 cases on average are treated each year, it was estimated that there would be approximately 897 new cases of hepatitis C in South Australia in 2010, which would remain relatively stable over the next 30 years (Figure 6). The model estimated about 17 new cases of liver failure, nine new cases of HCC, three cases receiving liver transplants, and 18 liver-related deaths in 2010. The annual number of these cases would increase each year under current conditions to an 11-13% increase by 2039.

Under the reduced treatment scenario, where treatment decreased from approximately 263 to 156 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%. It was estimated that there would be 98 additional HCV cases, 85 new cases of liver failure, 41 new cases of HCC, 13 cases receiving liver transplants, and 68 liver-related deaths relative to current treatment scenario (Table 18).

If treatment rates are increased over the next five years from approximately 263 cases to 443, 579, and 887 cases per year (increased treatment scenarios 1, 2, and 3), it was estimated that there would be 200 to 639 fewer new HCV cases, 53 to 96 fewer new cases of liver failure, 26 to 47 fewer new cases of HCC, eight to 15 fewer cases receiving liver transplants, and 44 to 79 fewer liver-related deaths over the 30-year period relative to the current treatment scenario (Table 18).

Figure 7: Expected epidemiological outcomes associated with changes in HCV treatment rates in South Australia

National Centre in HIV Epidemiology and Clinical Research

	HCV treatment scenarios					
Description		increme	ntal, relative t	o the current	scenario*	
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3	
Life years lost / gained	11,731	-1,346	861	1,177	1,557	
Number of treatment gains (Sustained virological response)		-2,008	1,898	2,822	4,113	
HCV cases / cases averted	26,800	-98	200	351	639	
Liver failure cases / cases averted	561	-85	53	73	96	
HCC cases / cases averted	299	-41	26	35	47	
HCV-related liver transplant cases / cases averted	109	-13	8	12	15	
Liver-related deaths / deaths averted	594	-68	44	60	79	

Table 18. Health impact of hepatitis C treatment strategies in South Australia, 2010-2039

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

Effect on life years in South Australia over the period 2010-2039 (undiscounted)

Under the current treatment scenario, it was estimated that 11,731 LYs (391 per year) would be lost over the 30-year period due to liver-related death in South Australia (Table 18).

Under the reduced treatment scenario, about 1,346 additional LYs (45 per year) would be lost and 2,570 fewer QALYs (86 per year) would be gained under the reduced treatment scenario relative to the current treatment scenario.

According to the increased treatment scenarios 1, 2, and 3, the incremental LYs gained relative to the current treatment scenario would be 861, 1,177, and 1,557, respectively (29-52 per year) over the next 30 years (Table 18). Compared with the current treatment scenario, the respective incremental QALYs gained would be 2,688, 4,082, and 6,167, respectively (90-206 per year).

Effect on costs incurred through HCV infection in South Australia over the period 2010-2039 (5% discount)

Under the current scenario, an estimated \$36m in total costs would be incurred on average due to hepatitis C each year over the next 30 years (Table 19). Of these costs, \$8m, \$19m, and \$9m, were attributed to health sector costs, patient and family costs, and productivity costs, respectively. Drug costs accounted for about \$3.5m (45%) of the total health sector costs on average each year.

Compared with the current treatment scenario, about \$198,000 additional total costs would accrue on average each year under the reduced treatment scenario over the next 30 years.

Under increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$264,000, \$425,500, and \$700,000 each year, respectively.

Table 19. Costs associated with hepatitis C treatment strategies in South Australia, 2010-2039

	HCV treatment scenarios								
Description		Incren	nental \$, relative	to the current sc	enario ⁺				
	Current	Reduction	Increased	Increased	Increased				
Costs: (undiscounted)	scenario	scenario	Scenario i	Scenario 2	Scenario 5				
Health sector costs ⁺									
Drug costs*	197.260.316	-36.777.272	34.417.728	51.129.271	74.634.792				
Other costs	241,870,990	4,029,923	-2,977,976	-4,264,254	-6,176,566				
Total	439,131,306	-32,747,348	31,439,752	46,865,016	68,458,225				
Treated (% Total)	58%	51%	63%	66%	69%				
Patient/family costs ⁺	1,071,810,710	58,383,912	-60,834,885	-92,324,736	-139,383,483				
Treated	8%	6%	10%	11%	13%				
Productivity costs ⁺	941,836,494	3,460,467	-7,035,494	-12,321,549	-22,473,684				
Total costs	2,452,778,511	29,097,030	-36,430,627	-57,781,269	-93,398,941				
Costs: (3% discount)									
Health sector costs ⁺									
Drug costs*	132,384,310	-24,309,029	23,788,173	35,590,054	52,547,278				
Other costs	162,164,156	1,376,588	-744,533	-985,350	-1,313,096				
Total	294,548,465	-22,932,442	23,043,640	34,604,703	51,234,182				
Patient/family costs ⁺	720,221,605	33,131,275	-35,148,588	-53,498,173	-81,013,372				
Productivity costs ⁺	418,944,476	1,692,099	-3,094,017	-5,322,335	-9,507,898				
Total costs	1,433,714,546	11,890,931	-15,198,965	-24,215,805	-39,287,087				
Costs: (5% discount)									
Health sector costs ⁺									
Drug costs*	105,651,401	-19,114,268	19,242,070	28,920,061	42,994,601				
Other costs	129,339,166	465,640	20,278	137,230	351,779				
Total	234,990,567	-18,648,628	19,262,348	29,057,291	43,346,380				
Patient/family costs ⁺	575,275,402	23,383,970	-25,116,416	-38,309,518	-58,137,115				
Productivity costs ⁺	283,112,247	1,193,670	-2,063,003	-3,511,274	-6,191,291				
Total costs ⁺	1,093,378,216	5,929,012	-7,917,071	-12,763,501	-20,982,025				

⁺Incremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost.

*Pegylated interferon and ribavirin costs.

Costs are expressed in 2008 Australian dollars.

Cost-effectiveness and cost-utility analysis

Table 20 summarises cost-effectiveness and cost-utility results. ICERs of each strategy are reported relative to the next best strategy. Alternatively, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the current scenario were \$17,067, \$16,866 and \$16,565 per QALY, respectively.

Table 20. Cost-effectiveness and cost-utility analysis, South Australia (2010-2039; 5% discount) from a health sector perspective: incremental cost per life year gained; incremental cost per sustained virological response achieved; and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
Reduction scenario	216,341,938		6,727	enect	(ð/LT)
Current scenario	234,990,567	18,648,628	6,216	511	\$36,476
Increased scenario 1	254,252,915	19,262,348	5,877	339	\$56,784
Increased scenario 2	264,047,857	29,057,291	5,752	464	\$62,568
Increased scenario 3	278,336,947	43,346,380	5,602	614	\$70,623
Treatment scenario	Cost (\$)	Increased cost	Effect (SVR)	Increased effect	ICER* (\$/SVR)
Reduction scenario	216,341,938		4,344		
Current scenario	234,990,567	18,648,628	5,394	1,050	17,767
Increased scenario 1	254,252,915	19,262,348	6,460	1,066	18,074
Increased scenario 2	264,047,857	29,057,291	6,999	1,605	18,109
Increased scenario 3	278,336,947	43,346,380	7,778	2,384	18,185
Treatment scenario	Cost (\$)	Increased cost	Effect (QALY)	Increased effect ⁺	ICER* (\$/QALY)
Reduction scenario	216,341,938		476,263		
Current scenario	234,990,567	18,648,628	477,309	1,046	17,831
Increased scenario 1	254,252,915	19,262,348	478,438	1,129	17,067
Increased scenario 2	264,047,857	9,794,943	479,032	594	16,484
Increased scenario 3	278,336,947	14,289,089	479,926	894	15,986

*Years of potential life lost due to HCV was estimated using the life expectancy of the average Australian, adjusted for premature mortality associated with hepatitis C.

⁺Incremental Quality-Adjusted Life Years (QALYs) gained.

[§]Incremental life years (LYs) gained.

*ICER, incremental cost-effectiveness ratio of each strategy relative to the next best strategy; SVR, sustained virological response. Both costs and effects are discounted at 5%.

See Appendix F for summaries of health and economic outcomes associated with hepatitis C treatment scenarios in South Australia over the period 2010 to 2013 and 2010 to 2079.

Epidemiological and economic evaluation of hepatitis C treatment scenarios in Tasmania

The epidemiologic and economic trends under various HCV treatment scenarios for Tasmania would be similar to the national trends since Australian population-specific epidemiologic and behavioural data were used to inform inputs for the Tasmanian model simulations.

Key findings

Effect on new HCV cases in Tasmania over the period 2010-2039

Under the current treatment scenario, where about 73 cases on average are treated each year, it was estimated that there would be approximately 250 new cases of hepatitis C in Tasmania in 2010, which would remain relatively stable over the next 30 years (Figure 7). The model estimated about five new cases of liver failure, two to three new cases of HCC, one case receiving liver transplant, and five liver-related deaths in 2010. The annual number of these cases would increase each year under current conditions to an increase of between 11-13% by 2039.

Under the reduced treatment scenario, where treatment decreased from approximately 73 to 44 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%. It was estimated that there would be 27 additional HCV cases, 24 new cases of liver failure, 11 new cases of HCC, four cases receiving liver transplants, and 19 liver-related deaths relative to current treatment scenario (Table 21).

If treatment rates are increased over the next five years from approximately 73 cases to 124, 162, and 247 cases per year (increased treatment scenarios 1, 2, and 3), it was estimated that there would be 56-178 fewer new HCV cases, 15-27 fewer new cases of liver failure, seven to 13 fewer new cases of HCC, 2-4 fewer cases receiving liver transplants, and 12-22 fewer liver-related deaths over the 30-year period relative to the current treatment scenario (Table 21).

Increased treatment scenario 3

	HCV treatment scenarios					
Description		incremer	ntal, relative to	o the current	scenario*	
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3	
Life years lost / gained	3,273	-376	242	327	434	
Number of treatment gains (Sustained virological response)		-560	531	786	1,147	
HCV cases / cases averted	7,477	-27	56	98	178	
Liver failure cases / cases averted	156	-24	15	20	27	
HCC cases / cases averted	83	-11	7	10	13	
HCV-related liver transplant cases / cases averted	30	-4	2	3	4	
Liver-related deaths / deaths averted	166	-19	12	17	22	

Table 21. Health	n impact of he	patitis C treatment	strategies in 7	Fasmania,	2010-2039
------------------	----------------	---------------------	-----------------	-----------	-----------

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

Effect on life years in Tasmania over the period 2010-2039 (undiscounted)

Under the current treatment scenario, it was estimated that 3,273 LYs (109 per year) would be lost over the 30-year period due to liver-related death in Tasmania (Table 21).

Under the reduced treatment scenario, about 376 additional LYs (13 per year) would be lost and 717 fewer QALYs (24 per year) would be gained under the reduced treatment scenario relative to the current treatment scenario.

According to the increased treatment scenarios 1, 2, and 3, the incremental LYs gained relative to the current treatment scenario would be 242, 327, and 434, respectively (8-14 per year) over the next 30 years (Table 21). Compared with the current treatment scenario, the respective incremental QALYs gained would be 753, 1,136, and 1,720, respectively (25-57 per year).

Effect on costs incurred through HCV infection in Tasmania over the period 2010-2039 (5% discount)

Under the current scenario, about \$10m total costs on average would incur through hepatitis C each year over the next 30 years in Tasmania (Table 22). Of these costs, \$2m, \$5m, and \$3m, were attributed to health sector costs, patient and family costs, and productivity costs, respectively. Drug costs accounted for about \$982,600 (45%) of the total health sector costs on average each year.

Compared with the current treatment scenario, about \$55,300 additional total costs would accrue on average each year under the reduced treatment scenario over the next 30 years.

Under increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$75,100, \$117,200, and \$195,000 each year, respectively.

	HCV treatment scenarios							
Description		Incremental \$, relative to the current scenari						
	Current	Reduction	Increased	Increased	Increased			
Costs: (undiscounted)	scenario	scenario	scenario i	scenario 2	scenario 3			
Health sector costs [†]								
Drug costs*	55.027.110	10.262.066	0.602.625	14266200	20.025.524			
Other costs	55,037,118	-10,263,066	9,603,635	14,266,202	20,825,521			
Tatal	67,483,825	1,126,016	-844,167	-1,1/6,353	-1,/19,429			
	122,520,943	-9,137,050	8,759,467	13,089,849	19,106,092			
Treated (% Total)	58%	51%	63%	66%	69%			
Patient/family costs ⁺	299,043,300	16,298,515	-17,042,295	-25,689,829	-38,870,439			
Treated	8%	6%	10%	11%	13%			
Productivity costs ⁺	262,779,402	965,568	-1,967,655	-3,431,814	-6,268,203			
Total costs	684,343,645	8,127,032	-10,250,483	-16,031,794	-26,032,550			
Costs: (3% discount)								
Health sector costs ⁺								
Drug costs*	36,936,221	-6,784,715	6,643,361	9,924,748	14,661,137			
Other costs	45,245,031	384,964	-215,940	-266,581	-363,844			
Total	82,181,252	-6,399,750	6,427,421	9,658,167	14,297,293			
Patient/family costs ⁺	200,947,245	9,250,382	-9,858,336	-14,873,937	-22,589,087			
Productivity costs ⁺	116,888,601	472,259	-866,466	-1,481,122	-2,651,492			
Total costs	400,017,099	3,322,891	-4,297,381	-6,696,892	-10,943,286			
Costs: (5% discount)								
Health sector costs ⁺								
Drug costs*	29,477,537	-5,335,479	5,377,335	8,061,163	11,995,037			
Other costs	36,086,616	130,483	-294	44,363	100,051			
Total	65,564,154	-5,204,996	5,377,041	8,105,525	12,095,088			
Patient/family costs ⁺	160,506,147	6,529,684	-7,051,149	-10,644,250	-16,208,525			
Productivity costs ⁺	78,990,394	333,206	-578,338	-976,476	-1,726,383			
Total costs ⁺	305,060,695	1,657,894	-2,252,446	-3,515,200	-5,839,820			

Table 22. Costs associated with hepatitis C treatment strategies in Tasmania, 2010-2039

⁺Incremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost.

*Pegylated interferon and ribavirin costs.

Costs are expressed in 2008 Australian dollars.

Cost-effectiveness and cost-utility analysis

Table 23 summarises cost-effectiveness and cost-utility results. ICERs of each strategy are reported relative to the next best strategy. Alternatively, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the current scenario were \$16,973, \$16,931 and \$16,579 per QALY respectively.

Table 23. Cost-effectiveness and cost-utility analysis, Tasmania (2010-2039; 5% discount) from a health sector perspective: incremental cost per life year gained; incremental cost per sustained virological response achieved; and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
Reduction scenario	60,359,157		1,877	enect	(7/11)
Current scenario	65,564,154	5,204,996	1,734	143	\$36,458
Increased scenario 1	70,941,195	5,377,041	1,639	95	\$56,446
Increased scenario 2	73,669,679	8,105,525	1,605	129	\$62,831
Increased scenario 3	77,659,242	12,095,088	1,563	171	\$70,686
Treatment scenario	Cost (\$)	Increased cost	Effect (SVR)	Increased effect	ICER* (\$/SVR)
Reduction scenario	60,359,157		1,212		
Current scenario	65,564,154	5,204,996	1,505	293	17,763
Increased scenario 1	70,941,195	5,377,041	1,804	299	18,005
Increased scenario 2	73,669,679	8,105,525	1,951	446	18,157
Increased scenario 3	77,659,242	12,095,088	2,170	665	18,196
Treatment scenario	Cost (\$)	Increased cost	Effect (QALY)	Increased effect ⁺	ICER* (\$/QALY)
Reduction scenario	60,359,157		132,881		
Current scenario	65,564,154	5,204,996	133,173	292	17,824
Increased scenario 1	70,941,195	5,377,041	133,490	317	16,973
Increased scenario 2	73,669,679	2,728,484	133,652	162	16,848
Increased scenario 3	77,659,242	3,989,563	133,902	251	15,908

⁺Years of potential life lost due to HCV was estimated using the life expectancy of the average Australian, adjusted for premature mortality associated with hepatitis C.

⁺Incremental Quality-Adjusted Life Years (QALYs) gained.

§Incremental life years (LYs) gained.

*ICER, incremental cost-effectiveness ratio of each strategy relative to the next best strategy; SVR, sustained virological response. Both costs and effects are discounted at 5%.

See Appendix G for summaries of health and economic outcomes associated with hepatitis C treatment scenarios in Tasmania over the period 2010 to 2013 and 2010 to 2079.

Epidemiological and economic evaluation of hepatitis C treatment scenarios in Victoria

The epidemiologic and economic trends under various HCV treatment scenarios for Victoria would be similar to the national trends since Australian population-specific epidemiologic and behavioural data were used to inform inputs for the Victoria model simulations.

Key findings

Effect on new HCV cases in Victoria over the period 2010-2039

Under the current treatment scenario, where about 785 cases on average are treated each year, it was estimated that there would be approximately 2,673 new cases of hepatitis C in Victoria in 2010, which would remain relatively stable over the next 30 years (Figure 8). The model estimated about 52 new cases of liver failure, 28 new cases of HCC, ten cases receiving liver transplants, and 55 liver-related deaths in 2010. The annual number of these cases would increase each year under current conditions to an 11-13% increase by 2039.

Under the reduced treatment scenario, where treatment decreased from approximately 785 to 464 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%. It was estimated that there would be 294 additional HCV cases, 254 new cases of liver failure, 122 new cases of HCC, 40 cases receiving liver transplants, and 204 additional liver-related deaths relative to current treatment scenario (Table 24).

If treatment rates are increased over the next five years from approximately 785 cases to 1,320, 1,726, and 2,642 cases per year (increased treatment scenarios 1, 2, and 3), it was estimated that there would be 597-1,905 fewer new HCV cases, 159-286 fewer new cases of liver failure, 77-139 fewer new cases of HCC, 25-46 fewer cases receiving liver transplants, and 130-235 fewer liver-related deaths over the 30-year period relative to the current treatment scenario (Table 24).

Figure 8: Expected epidemiological outcomes associated with changes in HCV treatment rates in Victoria

50

	HCV treatment scenarios						
Description		increme	ntal, relative t	o the current	scenario*		
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3		
Life years lost / gained	34,955	-4,025	2,575	3,503	4,637		
Number of treatment gains (Sustained virological response)		-5,991	5,662	8,405	12,253		
HCV cases / cases averted	79,853	-294	597	1,044	1,905		
Liver failure cases / cases averted	1,670	-254	159	216	286		
HCC cases / cases averted	890	-122	77	105	139		
HCV-related liver transplant cases / cases averted	325	-40	25	34	46		
Liver-related deaths / deaths averted	1,771	-204	130	177	235		

Table 24. Health	impact of he	patitis C treatment	strategies in V	ictoria, 2010-2039
			0	,

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

Effect on life years in Victoria over the period 2010-2039 (undiscounted)

Under the current treatment scenario, it was estimated that 34,955 LYs (1,165 per year) would be lost over the 30-year period due to liver-related death in Victoria (Table 24).

Under the reduced treatment scenario, about 4,025 additional LYs (134 per year) would be lost and 7,679 fewer QALYs (256 per year) would be gained under the reduced treatment scenario relative to the current treatment scenario.

According to the increased treatment scenarios 1, 2, and 3, the incremental LYs gained relative to the current treatment scenario would be 2,575, 3,503, and 4,637, respectively (86-155 per year) over the next 30 years (Table 24). Compared with the current treatment scenario, the respective incremental QALYs gained would be 8,030, 12,154, and 18,368, respectively (268-612 per year).

Effect on costs incurred through HCV infection in Victoria over the period 2010-2039 (5% discount)

Under the current scenario, about \$109m in total costs would be incurred on average due to hepatitis C each year over the next 30 years in Victoria (Table 25). Of these costs, \$23.5m, \$57m, and \$28m, were attributed to health sector costs, patient and family costs, and productivity costs, respectively. Drug costs accounted for about \$10.5m (45%) of the total health sector costs on average each year.

Compared with the current treatment scenario, about \$596,100 additional total costs would accrue on average each year under the reduced treatment scenario over the next 30 years.

Under increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$796,300, \$1m, and \$2m each year, respectively.

	HCV treatment scenarios Incremental \$, relative to the current scenario ⁺							
Description								
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3			
Costs: (undiscounted)								
Health sector costs ⁺								
Drug costs*	587,761,333	-109,684,368	102,561,281	152,349,242	222,399,046			
Other costs	720,683,383	12,106,343	-8,963,754	-12,658,156	-18,368,470			
Total	1,308,444,716	-97,578,026	93,597,528	139,691,086	204,030,577			
Treated (% Total)	58%	51%	63%	66%	69%			
Patient/family costs ⁺	3,193,593,422	174,475,488	-181,744,399	-274,852,594	-415,144,598			
Treated	8%	6%	10%	11%	13%			
Productivity costs ⁺	2,806,317,517	10,315,533	-20,996,190	-36,693,245	-66,944,394			
Total costs	7,308,355,655	87,212,996	-109,143,062	-171,854,754	-278,058,415			
Costs: (3% discount)	1							
Health sector costs ⁺								
Drug costs*	394,455,322	-72,558,470	70,926,418	106,027,546	156,570,580			
Other costs	483,187,208	4,156,457	-2,273,839	-2,906,004	-3,889,315			
Total	877,642,530	-68,402,013	68,652,579	103,121,542	152,681,265			
Patient/family costs ⁺	2,145,990,397	99,090,537	-105,089,109	-159,223,330	-241,262,940			
Productivity costs ⁺	1,248,296,075	5,051,380	-9,241,157	-15,845,020	-28,318,245			
Total costs	4,271,929,002	35,739,903	-45,677,686	-71,946,807	-116,899,920			
Costs: (5% discount)								
Health sector costs ⁺								
Drug costs*	314,801,341	-57,089,367	57,396,864	86,144,317	128,099,848			
Other costs	385,381,209	1,423,376	20,542	430,885	1,065,825			
Total	700,182,551	-55,665,991	57,417,406	86,575,202	129,165,673			
Patient/family costs ⁺	1,714,105,239	69,982,457	-75,140,526	-113,994,839	-173,119,015			
Productivity costs ⁺	843,567,181	3,567,094	-6,165,723	-10,450,863	-18,438,101			
Total costs ⁺	3,257,854,970	17,883,559	-23,888,843	-37,870,500	-62,391,443			

Table 25. Costs	associated with	hepatitis C treatme	ent strategies in V	/ictoria, 2010-2039

[†]Incremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost.

*Pegylated interferon and ribavirin costs.

Costs are expressed in 2008 Australian dollars.

Cost-effectiveness and cost-utility analysis

Table 26 summarises cost-effectiveness and cost-utility results. ICERs of each strategy are reported relative to the next best strategy. Alternatively, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the current scenario were \$17,007, \$16,887 and \$16,577 per QALY, respectively.

Table 26. Cost-effectiveness and cost-utility analysis, Victoria (2010-2039; 5% discount) from a health sector perspective: incremental cost per life year gained; incremental cost per sustained virological response achieved; and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(LY lost) [‡]	effect [§]	(\$/LY)
Reduction scenario	644,516,559		20,052		
Current scenario	700,182,551	55,665,991	18,522	1,530	\$36,374
Increased scenario 1	757,599,956	57,417,406	17,507	1,015	\$56,568
Increased scenario 2	786,757,753	86,575,202	17,140	1,382	\$62,655
Increased scenario 3	829,348,224	129,165,673	16,694	1,828	\$70,676
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(SVR)	effect	(\$/SVR)
Reduction scenario	644,516,559		12,935		
Current scenario	700,182,551	55,665,991	16,072	3,137	17,743
Increased scenario 1	757,599,956	57,417,406	19,257	3,184	18,031
Increased scenario 2	786,757,753	86,575,202	20,849	4,777	18,125
Increased scenario 3	829,348,224	129,165,673	23,171	7,099	18,195
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect ⁺	(\$/QALY)
Reduction scenario	644,516,559		1,419,071		
Current scenario	700,182,551	55,665,991	1,422,201	3,130	17,786
Increased scenario 1	757,599,956	57,417,406	1,425,577	3,376	17,007
Increased scenario 2	786,757,753	29,157,796	1,427,327	1,751	16,656
Increased scenario 3	829,348,224	42,590,471	1,429,993	2,665	15,980

^{*}Years of potential life lost due to HCV was estimated using the life expectancy of the average Australian, adjusted for premature mortality associated with hepatitis C.

⁺Incremental Quality-Adjusted Life Years (QALYs) gained.

[§]Incremental life years (LYs) gained.

*ICER, incremental cost-effectiveness ratio of each strategy relative to the next best strategy; SVR, sustained virological response. Both costs and effects are discounted at 5%.

See Appendix H for summaries of health and economic outcomes associated with hepatitis C treatment scenarios in Victoria over the period 2010 to 2013 and 2010 to 2079.

Epidemiological and economic evaluation of hepatitis C treatment scenarios in Western Australia

The epidemiologic and economic trends under various HCV treatment scenarios for Western Australia would be similar to the national trends since Australian population-specific epidemiologic and behavioural data were used to inform inputs for the WA model simulations.

Key findings

Effect on new HCV cases in Western Australia over the period 2010-2039

Under the current treatment scenario, where about 391 cases on average are treated each year, it was estimated that there would be approximately 1,334 new cases of hepatitis C in Western Australia in 2010, which would remain relatively stable over the next 30 years (Figure 9). The model estimated about 26 new cases of liver failure, 14 new cases of HCC, five cases receiving liver transplants, and 27 liver-related deaths in 2010. The annual number of these cases would increase each year under current conditions to an increase of between 11-13% by 2039.

Under the reduced treatment scenario, where treatment decreased from approximately 391 to 232 cases per year, the number of new cases of liver failure, HCC, liver transplants and liver-related deaths over the next 30 years could all be expected to increase, by 41-43%. It was estimated that there would be 146 additional HCV cases, 126 new cases of liver failure, 61 new cases of HCC, 20 cases receiving liver transplants, and 101 additional liver-related deaths relative to current treatment scenario (Table 27).

If treatment rates are increased over the next five years from approximately 232 cases to 658, 861, and 1,318 cases per year (increased treatment scenarios 1, 2, and 3), it was estimated that there would be 298-950 fewer new HCV cases, 79-143 fewer new cases of liver failure, 38-69 fewer new cases of HCC, 13-23 fewer cases receiving liver transplants, and 65-117 fewer liver-related deaths over the 30-year period relative to the current treatment scenario (Table 27).

Increased treatment scenario 3

	HCV treatment scenarios						
Description		incremental, relative to the current scenario*					
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3		
Life years lost / gained	17,439	-2,001	1,283	1,746	2,313		
Number of treatment gains (Sustained virological response)		-2,985	2,823	4,191	6,112		
HCV cases / cases averted	39,838	-146	298	521	950		
Liver failure cases / cases averted	833	-126	79	108	143		
HCC cases / cases averted	444	-61	38	52	69		
HCV-related liver transplant cases / cases averted	162	-20	13	17	23		
Liver-related deaths / deaths averted	883	-101	65	88	117		

Table 27. Health impact of hepatitis C treatment strategies in Western Australia, 2010-2039

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

Effect on life years in Western Australia over the period 2010-2039 (undiscounted)

Under the current treatment scenario, it was estimated that 17,439 LYs (581 per year) would be lost over the 30-year period due to liver-related death in Western Australia (Table 27).

Under the reduced treatment scenario, about 2,001 additional LYs (67 per year) would be lost and 3,820 fewer QALYs (127 per year) would be gained under the reduced treatment scenario relative to the current treatment scenario.

According to the increased treatment scenarios 1, 2, and 3, the incremental LYs gained relative to the current treatment scenario would be 1,283, 1,746, and 2,313, respectively (43-77 per year) over the next 30 years (Table 27). Compared with the current treatment scenario, the respective incremental QALYs gained would be 4,001, 6,058, and 9,162, respectively (133-305 per year).

Effect on costs incurred through HCV infection in Western Australia over the period 2010-2039 (5% discount)

Under the current scenario, about \$54m in total costs would be incurred on average due to hepatitis C each year over the next 30 years in Western Australia (Table 28). Of these costs, \$12m, \$28.5m, and \$14m, were attributed to health sector costs, patient and family costs, and productivity costs, respectively. Drug costs accounted for about \$5m (45%) of the total health sector costs on average each year.

Compared with the current treatment scenario, about \$294,000 additional total costs would accrue on average each year under the reduced treatment scenario over the next 30 years.

Under increased treatment scenarios 1, 2, and 3, there would be total cost savings on average of about \$395,000, \$627,000, and \$1m each year, respectively.

	HCV treatment scenarios						
Description		Incren	Incremental \$, relative to the current scenario ⁺				
	Current	Reduction	Increased	Increased	Increased		
Costs: (undiscounted)	scenario	scenario	scenario i	scenario 2	scenario 3		
Health sector costs [†]							
Drug costs*	293,224,936	-54,671,143	51,163,739	76,009,597	110,954,383		
Other costs	359,538,116	5,991,964	-4,449,787	-6,289,282	-9,158,916		
Total	652,763,052	-48,679,179	46,713,952	69,720,316	101,795,467		
Treated (% Total)	58%	51%	63%	66%	69%		
Patient/family costs ⁺	1,593,232,965	86,797,149	-90,551,009	-136,987,821	-207,083,759		
Treated	8%	6%	10%	11%	13%		
Productivity costs ⁺	1,400,027,472	5,145,014	-10,466,557	-18,294,255	-33,394,567		
Total costs	3,646,023,489	43,262,983	-54,303,614	-85,561,760	-138,682,859		
Costs: (3% discount)	• • • • • • • • •						
Health sector costs ⁺							
Drug costs*	196,787,573	-36,137,666	35,372,394	52,889,240	78,111,029		
Other costs	241,055,013	2,046,930	-1,121,013	-1,433,636	-1,937,345		
Total	437,842,587	-34,090,736	34,251,382	51,455,604	76,173,684		
Patient/family costs ⁺	1,070,600,018	49,256,590	-52,338,225	-79,334,048	-120,342,585		
Productivity costs ⁺	622,755,253	2,515,637	-4,604,899	-7,897,692	-14,125,949		
Total costs	2,131,197,858	17,681,491	-22,691,742	-35,776,136	-58,294,850		
Costs: (5% discount)							
Health sector costs ⁺							
Drug costs*	157,049,444	-28,415,867	28,618,720	42,964,829	63,906,237		
Other costs	192,261,113	692,466	19,778	226,835	533,880		
Total	349,310,557	-27,723,401	28,638,498	43,191,664	64,440,117		
Patient/family costs ⁺	855,139,265	34,766,058	-37,411,238	-56,785,435	-86,349,433		
Productivity costs ⁺	420,842,436	1,774,564	-3,071,483	-5,207,931	-9,197,300		
Total costs ⁺	1,625,292,258	8,817,220	-11,844,223	-18,801,701	-31,106,617		

Table 28. Costs associated with hepatitis C treatment strategies in Western Australia, 2010-2039

⁺Incremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost.

*Pegylated interferon and ribavirin costs.

Costs are expressed in 2008 Australian dollars.

Cost-effectiveness and cost-utility analysis

Table 29 summarises cost-effectiveness and cost-utility results. ICERs of each strategy are reported relative to the next best strategy. Alternatively, the ICERs for increased treatment scenarios 1, 2, and 3 relative to the current scenario were \$17,036, \$16,912 and \$16,580 per QALY, respectively.

Table 29. Cost-effectiveness and cost-utility analysis, Western Australia (2010-2039; 5% discount) from a health sector perspective: incremental cost per life year gained; incremental cost per sustained virological response achieved; and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(LY lost)⁺	effects	(\$/LY)
Reduction scenario	321,587,156		10,000		
Current scenario	349,310,557	27,723,401	9,240	760	\$36,473
Increased scenario 1	377,949,055	28,638,498	8,735	505	\$56,673
Increased scenario 2	392,502,221	43,191,664	8,552	688	\$62,753
Increased scenario 3	413,750,674	64,440,117	8,329	912	\$70,692
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
	(+)		(SVR)	effect	(\$/SVR)
Poduction sconario	221 587 156		6.458	enect	(ψ, 5 Υ ΙΚ)
Reduction scenario	521,507,150		0,430		
Current scenario	349,310,557	27,723,401	8,018	1,560	17,766
Increased scenario 1	377,949,055	28,638,498	9,605	1,586	18,052
Increased scenario 2	392,502,221	43,191,664	10,399	2,381	18,143
Increased scenario 3	413,750,674	64,440,117	11,559	3,541	18,197
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(OALY)	effect ⁺	(\$/OALY)
Reduction scenario	321,587,156		707,959		(+,)
Current scenario	349,310,557	27,723,401	709,514	1,555	17,830
Increased scenario 1	377,949,055	28,638,498	711,195	1,681	17,036
Increased scenario 2	392,502,221	14,553,166	712,068	873	16,672
Increased scenario 3	413,750,674	21,248,453	713,401	1,333	15,945

⁺Years of potential life lost due to HCV was estimated using the life expectancy of the average Australian, adjusted for premature mortality associated with hepatitis C.

⁺Incremental Quality-Adjusted Life Years (QALYs) gained.

§Incremental life years (LYs) gained.

*ICER, incremental cost-effectiveness ratio of each strategy relative to the next best strategy; SVR, sustained virological response. Both costs and effects are discounted at 5%.

See Appendix I for summaries of health and economic outcomes associated with hepatitis C treatment scenarios in Western Australia over the period 2010 to 2013 and 2010 to 2079.

Discussion

The projected HCV incidence of approximately 11,700 in 2010 is generally consistent with a previous study carried out in Australia by the HCV Projections Working Group [5]. Under levels of current treatment at around 3,500 chronic HCV cases per year, it was estimated that there would be an increase of between 11-13% in the number of new cases of liver failure and HCC, liver transplant cases, and liver-related deaths attributable to HCV in 2039. The model suggests that if annual treatment rates are increased twofold, compared with current levels, there would be a modest decline in the number of new cases of liver failure (7%) and HCC (6%), people receiving a liver transplant (4%), and the number of liver-related deaths (3%) over the next 30 years. However, if treatment rates are increased by three- to fourfold, these numbers would be expected to decrease by about 20%. The economic analyses suggest that increased treatment uptake of up to three- to fourfold is associated with substantial long-term total cost savings and gains in LYs and QALYs; however, this will also be associated with increased health sector costs due to increased drug costs. Most cost savings were found to be in patient and family time costs associated with hepatitis C care.

A decline in treatment uptake has been reported in Europe [24] and in the United States [25] due to lack of diagnosis or physician referral [25]. Although this scenario is unlikely under current conditions in Australia, factors such as patients and/or clinicians delaying treatment in anticipation of new treatments, such as specifically targeted antiviral therapy for HCV (STAT-C) becoming available, or government inaction on disease awareness or clinic funding, are potential threats to treatment uptake rates. This analysis showed that a decline in the treatment uptake from 3,500 to 2,000 chronic HCV cases per year is associated with a substantial increase in the long-term liver-related consequences (41-43%; see Figure 1) and total costs (55% relative to current levels of treatment; see Table 3). Previous HCV Projections Working Group's estimates in 2005, suggest that the number of cirrhosis cases, new cases of liver failure and HCC would double by 2025 if the number of people with chronic HCV receiving treatment for hepatitis C continues at about 2,000 per year [4]. Direct comparison of the current model with previous models is hampered by variation in the methodologies, natural history data, and treatment efficacy.

Compared with the current treatment scenario, increased treatment scenarios are costeffective, with an ICER in the range of \$16,500 to \$17,000 per QALY. Although direct comparison is hampered by the variation in the comparator group, these estimates are within the range reported by other studies: \$4,000 to \$35,000 per QALY for interferon-based therapies for chronic HCV infection, which is regarded as good value for money when compared with other well accepted medical interventions [26-28]. A previous Australian study estimated the ICER at \$5,625 per QALY for six months' treatment with interferon or \$8,250 per QALY gained for 12 months treatment [28].

In this analysis, QALY gains exceed life expectancy gains, suggesting that a substantial proportion of the clinical benefit associated with treating chronic hepatitis C results from averting progression to advanced liver disease stages, associated with a poorer quality of life

[29]. These findings are consistent with previous studies [27, 28], in which benefits of treatment were mainly due to improvements in health-related quality of life rather than survival.

In the sensitivity analyses, treatment efficacy for HCV genotype 1 patients with no fibrosis to mild fibrosis stage (F0 to F2), costs of PEG-IFN and ribavirin, and utilities for F0 to F2 stage were the key drivers in the model. Increased treatment scenarios become more cost-effective as treatment efficacy for HCV genotype 1 patients with F0 to F2 stage increases, drug costs decrease, and utilities for F0 to F2 stage decrease. The model showed no cost savings if the health sector cost increases by 50% over the period. Sensitivity results revealed that the model was robust to all variables, including transition probabilities, treatment efficacy, health care costs and utilities. All simulations fall below a willingness-to-pay threshold of \$50,000 per QALY.

Treating hepatitis C is one strategy aiming to reduce the burden of disease. It is possible to cure hepatitis C in at least half of those treated; however, access to appropriate treatment services remains limited for many people with hepatitis C. There appears to be considerable scope for expanding the treatment of hepatitis C and delivering substantial health gains to individuals suffering from the effects of the virus in Australian settings. Despite the National Hepatitis C Strategy 2005-2008 priority area for action to improve access to treatment and support and increase treatment uptake among people with hepatitis C, and NSW Hepatitis C Treatment and Care Strategy recommendations of broadening HCV treatment service delivery, there is currently limited capacity in most of Australia's hepatitis C treatment services to treat more people with hepatitis C. Pilot studies such as training of medical service providers in hepatitis C, GP initiation of treatment, integrating hepatitis C treatment services within opiate pharmacotherapy settings and prison settings, and assessment of costs and effectiveness of these programs are currently underway or under consideration to improve hepatitis C treatment uptake. This study provides evidence that increased treatment uptake by up to three- to fourfold is associated with substantial health benefits, long-term total cost savings, and gains in LYs and QALYs, and help guide implementation of programs to increase the capacity of treatment services.

Limitations

There are several methodological issues that need to be considered in interpreting the results. First, in the epidemic transmission model, it was assumed that injecting behaviour such as frequency of injecting and sharing rates among the IDU population over time were constant. Treatment may have an impact on injecting behaviour. However, data are lacking to inform the model. Increased treatment uptake may also increase awareness of hepatitis C and education among the population, which in turn may have an indirect effect on disease transmission.

Second, only the current standard of care with combination PEG-IFN and ribavirin therapy and its direct impact on the burden of disease were considered in the analyses. New potential improved treatments, which should increase SVR rates among people receiving treatment and other preventive measures that could reduce new infections, were not considered in the analyses.

Third, the analyses did not address opportunity costs, the value of the alternative use of resources, which is unknown.

Fourth, a friction cost approach was used in the productivity analysis rather than the human capital approach because this approach is recommended by several reimbursement agencies and because it reduces the risk of increasing any uncertainty in the estimates of productivity gains excessively [30]. Taxation and welfare payments were not included in the estimation of productivity costs.

Finally, in the economic analyses, health care resource use is considered proportional to increased treatment uptake. Strategies designed to increase treatment uptake, such as training and education of health care personnel was not considered, and thus, may lead to overestimation of total cost savings.

References

- 1. The Australian Government Department of Health and Ageing (2005) Economic Evaluation of Hepatitis C in Australia, *Applied Economics*, August 2005, Sydney.
- 2. National Centre in HIV Epidemiology and Clinical Research. *HIV/AIDS, viral hepatitis and sexually transmissible infections in Australia Annual Surveillance Report 2009.* National Centre in HIV Epidemiology and Clinical Research, The University of New South Wales, Sydney, NSW.
- 3. National Centre in HIV Epidemiology and Clinical Research. *HIV/AIDS, viral hepatitis and sexually transmissible infections in Australia Annual Surveillance Report 2008.* National Centre in HIV Epidemiology and Clinical Research, The University of New South Wales, Sydney, NSW.
- 4. Ministerial Advisory Committee on AIDS, Sexual Health and Hepatitis: Hepatitis C Sub-Committee (2006) Hepatitis C Virus Projections Working Group: *Estimates and Projections of the Hepatitis C Virus Epidemic in Australia 2006*, National Centre in HIV Epidemiology and Clinical Research (NCHECR), Sydney.
- 5. Razali K, Thein HH, Bell J, Cooper-Stanbury M, Dolan K, Dore G et al. Modelling the hepatitis C virus epidemic in Australia Drug *Alcohol Depend* 2007;91(2-3):228-35.
- 6. Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies *J Viral Hepat* 2006;13(1):34-41.
- 7. Thomas DL, Astemborski J, Rai RM, Anania FA, Schaeffer M, Galai N, et al. The natural history of hepatitis C virus infection: host, viral, and environmental factors *JAMA* 2000;284(4):450-6.
- 8. Seeff LB. Natural history of chronic hepatitis C *Hepatology* 2002;36(5 Suppl 1):S35-46.
- 9. Hadziyannis SJ, Sette H, Jr., Morgan TR, Balan V, Diago M, Marcellin P, et al. Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose *Ann Intern Med* 2004;140(5):346-55.
- 10. Sievert W. Management issues in chronic viral hepatitis: hepatitis C J Gastroenterol Hepatol 2002;17(4):415-22.
- 11. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL, Jr., et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection *N Engl J Med* 2002;347(13):975-82.
- 12. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for

initial treatment of chronic hepatitis C: a randomised trial. *Lancet* 2001;358(9286):958-65.

- 13. Gidding HF, Topp L, Middleton M, Robinson K, Hellard M, McCaughan G, et al. The epidemiology of hepatitis C in Australia: notifications, treatment uptake and liver transplantations, 1997-2006. *J Gastroenterol Hepatol* 2009;24(10):1648-54.
- 14. Backmund M, Meyer K, Edlin BR. Infrequent reinfection after successful treatment for hepatitis C virus infection in injection drug users. *Clin Infect Dis* 2004;39(10):1540-3.
- 15. Currie SL, Ryan JC, Tracy D, Wright TL, George S, McQuaid R, et al. A prospective study to examine persistent HCV reinfection in injection drug users who have previously cleared the virus *Drug Alcohol Depend* 2008;93(1-2):148-54.
- 16. Dalgard O. Follow-up studies of treatment for hepatitis C virus infection among injection drug users. *Clin Infect Dis* 2005;40 Suppl 5:S336-8.
- 17. Reichard O, Glaumann H, Fryden A, Norkrans G, Wejstal R, Weiland O. Long-term follow-up of chronic hepatitis C patients with sustained virological response to alphainterferon. *J Hepatol* 1999;30(5):783-7.
- 18. Sobesky R, Mathurin P, Charlotte F, Moussalli J, Olivi M, Vidaud M, et al. Modeling the impact of interferon alfa treatment on liver fibrosis progression in chronic hepatitis C: a dynamic view. The Multivirc Group *Gastroenterology* 1999;116(2):378-86.
- 19. McHutchison JG, Ware JE, Jr., Bayliss MS, Pianko S, Albrecht JK, Cort S, et al. The effects of interferon alpha-2b in combination with ribavirin on health related quality of life and work productivity. *J Hepatol* 2001;34(1):140-7.
- 20. Ware JE, Jr., Bayliss MS, Mannocchia M, Davis GL. Health-related quality of life in chronic hepatitis C: impact of disease and treatment response. The Interventional Therapy Group. *Hepatology* 1999;30(2):550-5.
- 21. John-Baptiste AA, Tomlinson G, Hsu PC, Krajden M, Heathcote EJ, Laporte A, et al. Sustained Responders Have Better Quality of Life and Productivity Compared With Treatment Failures Long After Antiviral Therapy for Hepatitis C. *Am J Gastroenterol* 2009;104(10):2439-48.
- 22. Heathcote EJ, Shiffman ML, Cooksley WG, Dusheiko GM, Lee SS, Balart L, et al. Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis. *N Engl J Med* 2000;343(23):1673-80.
- 23. Marcellin P, Pequignot F, Delarocque-Astagneau E, Zarski JP, Ganne N, Hillon P, et al. Mortality related to chronic hepatitis B and chronic hepatitis C in France: evidence for the role of HIV coinfection and alcohol consumption. *J Hepatol* 2008;48(2):200-7.
- 24. Lettmeier B, Muhlberger N, Schwarzer R, Sroczynski G, Wright D, Zeuzem S, et al. Market uptake of new antiviral drugs for the treatment of hepatitis C. J Hepatol 2008;49(4):528-36.

- 25. Volk ML, Tocco R, Saini S, Lok AS. Public health impact of antiviral therapy for hepatitis C in the United States. *Hepatology* 2009;50(6):1750-5.
- 26. Wong JB. Hepatitis C: cost of illness and considerations for the economic evaluation of antiviral therapies. *Pharmacoeconomics* 2006;24(7):661-72.
- 27. Salomon JA, Weinstein MC, Hammitt JK, Goldie SJ. Cost-effectiveness of treatment for chronic hepatitis C infection in an evolving patient population. *JAMA* 2003;290(2):228-37.
- 28. Shiell A, Brown S, Farrell GC. Hepatitis C: an economic evaluation of extended treatment with interferon. *Med J Aust* 1999;171(4):189-93.
- 29. Tengs TO. Cost-effectiveness versus cost-utility analysis of interventions for cancer: does adjusting for health-related quality of life really matter? *Value Health* 2004;7(1):70-8.
- 30. PBAC, Guidelines for preparing submissions to the Pharmaceutical Benefits Advisory Committee (Version 4.3). 2008, Australian Department of Health and Ageing: Canberra.
- 31. Gold MR, Siegel JE, Russell LB, Weinstein MC, eds. *Cost-Effectiveness in Health and Medicine*. New York: Oxford University Press; 1996.
- 32. 3302.0.55.001 Life Tables, Australia, 2004–2006. [11 May 2009]; Available from: http://abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3302.0.55.0012006?OpenDocume nt.
- 33. Amin J, Law MG, Bartlett M, Kaldor JM, Dore GJ. Causes of death after diagnosis of hepatitis B or hepatitis C infection: a large community-based linkage study. *Lancet* 2006;368(9539):938-45.
- 34. Iversen J TL, Maher L. *Australian NSP Survey National Data Report 2002--2006*: National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, 2007.
- 35. Kwon JA, Iversen J, Maher L, Law MG, Wilson DP. The impact of needle and syringe programs on HIV and HCV transmissions in injecting drug users in Australia: a model-based analysis. *J Acquir Immune Defic Syndr* 2009;51(4):462-9.
- 36. Thein HH, Yi Q, Dore GJ, Krahn MD. Estimation of stage-specific fibrosis progression rates in chronic hepatitis C virus infection: A meta-analysis and meta-regression *Hepatology* 2008;48(2):418-31.
- 37. Bruno R, Sacchi P, Puoti M, Maiocchi L, Patruno S, Carosi G, et al. Natural History of Compensated Viral Cirrhosis in a Cohort of Patients With Human Immunodeficiency Virus Infection. *J Acquir Immune Defic Syndr* 2007;46(3):297-303.

- 38. Bruno S, Silini E, Crosignani A, Borzio F, Leandro G, Bono F, et al. Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a prospective study. *Hepatology* 1997;25(3):754-8.
- 39. Chiaramonte M, Stroffolini T, Vian A, Stazi MA, Floreani A, Lorenzoni U, et al. Rate of incidence of hepatocellular carcinoma in patients with compensated viral cirrhosis. *Cancer* 1999;85(10):2132-7.
- 40. Degos F, Christidis C, Ganne-Carrie N, Farmachidi JP, Degott C, Guettier C, et al. Hepatitis C virus related cirrhosis: time to occurrence of hepatocellular carcinoma and death. *Gut* 2000;47(1):131-6.
- 41. del Olmo JA, Serra MA, Rodriguez F, Escudero A, Gilabert S, Rodrigo JM. Incidence and risk factors for hepatocellular carcinoma in 967 patients with cirrhosis. *J Cancer Res Clin Oncol* 1998;124(10):560-4.
- 42. Fattovich G, Giustina G, Degos F, Tremolada F, Diodati G, Almasio P, et al. Morbidity and mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients. *Gastroenterology* 1997;112(2):463-72.
- 43. Fattovich G, Pantalena M, Zagni I, Realdi G, Schalm SW, Christensen E. Effect of hepatitis B and C virus infections on the natural history of compensated cirrhosis: a cohort study of 297 patients. *Am J Gastroenterol* 2002;97(11):2886-95.
- 44. Gentilini P, Laffi G, La Villa G, Romanelli RG, Buzzelli G, Casini-Raggi V, et al. Long course and prognostic factors of virus-induced cirrhosis of the liver. *Am J Gastroenterol* 1997;92(1):66-72.
- 45. Hu KQ, Tong MJ. The long-term outcomes of patients with compensated hepatitis C virus-related cirrhosis and history of parenteral exposure in the United States. *Hepatology* 1999;29(4):1311-6.
- 46. Hutchinson SJ, Bird SM, Goldberg DJ. Modeling the current and future disease burden of hepatitis C among injection drug users in Scotland. *Hepatology* 2005;42(3):711-23.
- 47. Ikeda K, Saitoh S, Koida I, Arase Y, Tsubota A, Chayama K, et al. A multivariate analysis of risk factors for hepatocellular carcinogenesis: a prospective observation of 795 patients with viral and alcoholic cirrhosis. *Hepatology* 1993;18(1):47-53.
- 48. Imberti D, Fornari F, Sbolli G, Buscarini E, Squassante L, Buscarini L. Hepatocellular carcinoma in liver cirrhosis. A prospective study. *Scand J Gastroenterol* 1993;28(6):540-4.
- 49. Niederau C, Lange S, Heintges T, Erhardt A, Buschkamp M, Hurter D, et al. Prognosis of chronic hepatitis C: results of a large, prospective cohort study. *Hepatology* 1998;28(6):1687-95.
- 50. Nishiguchi S, Kuroki T, Nakatani S, Morimoto H, Takeda T, Nakajima S, et al. Randomised trial of effects of interferon-alpha on incidence of hepatocellular carcinoma in chronic active hepatitis C with cirrhosis. *Lancet* 1995;346(8982):1051-5.

- 51. Serfaty L, Aumaitre H, Chazouilleres O, Bonnand AM, Rosmorduc O, Poupon RE, et al. Determinants of outcome of compensated hepatitis C virus-related cirrhosis. *Hepatology* 1998;27(5):1435-40.
- 52. Tsai JF, Jeng JE, Ho MS, Chang WY, Hsieh MY, Lin ZY, et al. Effect of hepatitis C and B virus infection on risk of hepatocellular carcinoma: a prospective study. *Br J Cancer* 1997;76(7):968-74.
- 53. Planas R, Balleste B, Alvarez MA, Rivera M, Montoliu S, Galeras JA, et al. Natural history of decompensated hepatitis C virus-related cirrhosis. A study of 200 patients. *J Hepatol* 2004;40(5):823-30.
- 54. Thein HH, Yi Q, Heathcote EJ, Krahn MD. Prognosis of hepatitis C virus-infected Canadian post-transfusion compensation claimant cohort. *J Viral Hepat* 2009;16(11):802-13.
- 55. Krahn M, Wong JB, Heathcote J, Scully L, Seeff L. Estimating the prognosis of hepatitis C patients infected by transfusion in Canada between 1986 and 1990. *Med Decis Making* 2004;24(1):20-9.
- 56. Stoove MA, Dietze PM, Aitken CK, Jolley D. Mortality among injecting drug users in Melbourne: a 16-year follow-up of the Victorian Injecting Cohort Study (VICS). *Drug Alcohol Depend* 2008;96(3):281-5.
- 57. Poynard T, McHutchison J, Manns M, Trepo C, Lindsay K, Goodman Z, et al. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. *Gastroenterology* 2002;122(5):1303-13.
- 58. Lo Re V, 3rd, Amorosa VK, Localio AR, O'Flynn R, Teal V, Dorey-Stein Z, et al. Adherence to hepatitis C virus therapy and early virologic outcomes. *Clin Infect Dis* 2009;48(2):186-93.
- 59. Weiss JJ, Brau N, Stivala A, Swan T, Fishbein D. Review article: adherence to medication for chronic hepatitis C building on the model of human immunodeficiency virus antiretroviral adherence research. *Aliment Pharmacol Ther* 2009;30(1):14-27.
- 60. Shiell A, Law MG. The cost of hepatitis C and the cost-effectiveness of its prevention. *Health Policy* 2001;58(2):121-31.
- 61. Clinical profiles for public hospitals, AR-DRG v5.1, Australia, 2004-05. [cited 2009 7 May]; available from: <u>http://www.health.gov.au/internet/main/publishing.nsf/Content/A787A8688E9A9AEEC</u> <u>A2571EA000B6C34/\$File/Tbl8b_07.pdf</u>.
- 62. Public Sector Estimated Round 11 (2006-07) AR-DRG 5.1 Cost Report. [cited 2009 7 May]; available from: <u>http://www.health.gov.au/internet/main/publishing.nsf/Content/Round 11-cost-reports</u>.

66

- 63. Commonwealth Department of Health and Ageing. Medicare Benefits Schedule book. In: *Ageing* CDoHa, editor. Canberra, ACT: Commonwealth of Australia 2007.
- 64. Commonwealth Department of Health and Ageing. *Schedule of Pharmaceutical Benefits for approved pharmacists and medical practitioners*. Editor Commonwealth of Australia; 2007. Canberra, ACT.
- 65. Commonwealth Department of Health and Ageing. *National Hospital Cost Data Collection. Cost Report Round 11 (2006–7) AR-DRG v5.1.* Editor Commonwealth Department of Health and Ageing; 2008. Canberra, ACT.
- 66. Koopmanschap MA, Rutten FF, van Ineveld BM, van Roijen L. The friction cost method for measuring indirect costs of disease. *J Health Econ* 1995;14(2):171-89.
- 67. TreeAge Software I. Data Pro for Health Care User's Manual. Williamstown, MA: TreeAge Software, INC.; 2001.
- 68. Lohse N, Hansen AB, Pedersen G, Kronborg G, Gerstoft J, Sorensen HT, et al. Survival of persons with and without HIV infection in Denmark, 1995-2005. *Ann Intern Med* 2007;146(2):87-95.
- 69. Day CA, White B, Thein HH, Doab A, Dore GJ, Bates A, et al. Experience of hepatitis C testing among injecting drug users in Sydney, Australia. *AIDS Care* 2008;20(1):116-23.
- 70. White B, Day C, Thein HH, Doab A, Bates A, Holden J, et al. Acceptability of hepatitis C virus testing methods among injecting drug users. *Drug Alcohol Rev* 2008:1-5.
- 71. Thein HH, Krahn M, Kaldor JM, Dore GJ. Estimation of utilities for chronic hepatitis C from SF-36 scores. *Am J Gastroenterol* 2005;100(3):643-51.
- 72. Chong CA, Gulamhussein A, Heathcote EJ, Lilly L, Sherman M, Naglie G, et al. Health-state utilities and quality of life in hepatitis C patients. *Am J Gastroenterol* 2003;98(3):630-8.
- 73. Hsu PC, Krajden M, Yoshida EM, Anderson FH, Tomlinson GA, Krahn MD. Does cirrhosis affect quality of life in hepatitis C virus-infected patients? *Liver Int* 2009;29(3):449-58.
- 74. Drummond MF, Sculpher MJ, Torrance GW, O'Brien BJ, Stoddart GL. *Methods for the Economic Evaluation of Health Care Programmes* 3rd ed. New York: Oxford University Press; 2005.
- 75. Torrance GW. Utility approach to measuring health-related quality of life. *J Chronic Dis* 1987;40(6):593-603.
- 76. Torrance GW, Feeny D. Utilities and quality-adjusted life years. *Int J Technol Assess Health Care* 1989;5(4):559-75.

- 77. Iman RL, Helton JC, Campbell JE. An Approach To Sensitivity Analysis Of Computer-Models .1. Introduction, Input Variable Selection And Preliminary Variable Assessment. Journal Of Quality Technology 1981;13(3):174.
- 78. Iman RL, Helton JC, Campbell JE. An approach to sensitivity analysis of computermodels .2. Ranking of input variables, response-surface validation, distribution effect and technique synopsis. *Journal of Quality Technology* 1981;13(4):232.
- 79. Hoare A, Regan DG, Wilson DP. Sampling and sensitivity analyses tools (SaSAT) for computational modelling. *Theor Biol Med Model* 2008;5:4.
- 80. Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, Strathdee SA, et al. Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. *Lancet* 2008;372(9651):1733-45.
- 81. National Centre in HIV Epidemiology and Clinical Research. *Return on investment 2: Evaluating the cost-effectiveness of needle and syringe programs among injecting drug users in Australia*; 2009.
- 82. Law MG, Lynskey M, Ross J, Hall W. Back-projection estimates of the number of dependent heroin users in Australia. *Addiction* 2001;96(3):433-43.
- 83. Pollack HA. Cost-effectiveness of harm reduction in preventing hepatitis C among injection drug users. *Med Decis Making* 2001;21(5):357-67.
- 84. Kaplan EH. Needles that kill: modeling human immunodeficiency virus transmission via shared drug injection equipment in shooting galleries. *Rev Infect Dis* 1989;11(2):289-98.
- 85. Behrens DA, Caulkins JP, Tragler G, Haunschmied JL, Feichtinger G. A dynamic model of drug initiation: implications for treatment and drug control. *Math Biosci* 1999;159(1):1-20.
- 86. Short LJ, Bell DM. Risk of occupational infection with blood-borne pathogens in operating and delivery room settings. *Am J Infect Control* 1993;21(6):343-50.
- 87. Gerberding JL. Management of Occupational Exposures to Blood-Borne Viruses. *New Eng J Med* 1995;332(7):444.
- 88. MacDonald M, Crofts N, Kaldor J. Transmission of hepatitis C virus: rates, routes, and cofactors. *Epidemiol Rev* 1996;18(2):137-48.
- 89. Kiyosawa K, Sodeyama T, Tanaka E, Nakano Y, Furuta S, Nishioka K, et al. Hepatitis C in hospital employees with needlestick injuries Ann Intern Med 1991;115(5):367-9.
- 90. Sodeyama T, Kiyosawa K, Urushihara A, Matsumoto A, Tanaka E, Furuta S, et al. Detection of hepatitis C virus markers and hepatitis C virus genomic-RNA after needlestick accidents. *Arch Intern Med* 1993;153(13):1565-72.
- 91. Patz JA, Jodrey D. Occupational health in surgery: risks extend beyond the operating room. *Aust N Z J Surg* 1995;65(9):627-9.

68

- 92. Hamid SS, Farooqui B, Rizvi Q, Sultana T, Siddiqui AA. Risk of transmission and features of hepatitis C after needlestick injuries. *Infect Control Hosp Epidemiol* 1999;20(1):63-4.
- 93. De Carli G, Puro V, Ippolito G. Risk of hepatitis C virus transmission following percutaneous exposure in healthcare workers. *Infection* 2003;31 Suppl 2:22-7.
- 94. Law MG, Dore GJ, Bath N, Thompson S, Crofts N, Dolan K, et al. Modelling hepatitis C virus incidence, prevalence and long-term sequelae in Australia, 2001. *Int J Epidemiol* 2003;32(5):717-24.
- 95. Sweeting MJ, De Angelis D, Brant LJ, Harris HE, Mann AG, Ramsay ME. The burden of hepatitis C in England. *J Viral Hepat* 2007;14(8):570-6.
- 96. Annual Surveillance Report: HIV/AIDS, viral hepatitis and sexually transmissible infections in Australia. National Centre in HIV Epidemiology and Clinical Research 2008.
- 97. Charlton M, Seaberg E, Wiesner R, Everhart J, Zetterman R, Lake J, et al. Predictors of patient and graft survival following liver transplantation for hepatitis C. *Hepatology* 1998;28(3):823-30.
- 98. Gane EJ, Portmann BC, Naoumov NV, Smith HM, Underhill JA, Donaldson PT, et al. Long-term outcome of hepatitis C infection after liver transplantation. *N Engl J Med* 1996;334(13):815-20.
- 99. Baker RI, Smith J, Eikelboom J, Leahy B, Kay I, Lavis N, et al. Hepatitis C genotypes in Australian haemophilia patients. *Aust N Z J Med* 1996;26(6):789-92.
- 100. Chen J, McGuinness PH, Koorey DJ, Rickard K, Wylie B, McCaughan GW. Hepatitis C virus genotypes in a cohort of Australian blood donors and haemophiliac and liver transplant patients. *J Gastroenterol Hepatol* 1997;12(2):182-7.
- 101. Kaba S, Dutta U, Byth K, Crewe EB, Khan MH, Coverdale SA, et al. Molecular epidemiology of hepatitis C in Australia. *J Gastroenterol Hepatol* 1998;13(9):914-20.
- 102. McCaw R, Moaven L, Locarnini SA, Bowden DS. Hepatitis C virus genotypes in Australia, *J Viral Hepat* 1997;4(5):351-7.
- 103. Mison LM, Young IF, O'Donoghue M, Cowley N, Thorlton N, Hyland CA. Prevalence of hepatitis C virus and genotype distribution in an Australian volunteer blood donor population. *Transfusion* 1997;37(1):73-8.
- 104. Kamal SM. Acute hepatitis C: a systematic review. Am J Gastroenterol 2008;103(5):1283-97.
- 105. Kamal SM, Moustafa KN, Chen J, Fehr J, Abdel Moneim A, Khalifa KE, et al. Duration of peginterferon therapy in acute hepatitis C: a randomized trial. *Hepatology* 2006;43(5):923-31.

National Centre in HIV Epidemiology and Clinical Research

- 106. Kamal SM, Fouly AE, Kamel RR, Hockenjos B, Al Tawil A, Khalifa KE, et al. Peginterferon alfa-2b therapy in acute hepatitis C: impact of onset of therapy on sustained virologic response. *Gastroenterology* 2006;130(3):632-8.
- 107. Broers B, Junet C, Bourquin M, Deglon JJ, Perrin L, Hirschel B. Prevalence and incidence rate of HIV, hepatitis B and C among drug users on methadone maintenance treatment in Geneva between 1988 and 1995. *AIDS* 1998;12(15):2059-66.
- 108. De Rosa FG, Bargiacchi O, Audagnotto S, Garazzino S, Cariti G, Calleri G, et al. Twelve-week treatment of acute hepatitis C virus with pegylated interferon- alpha -2b in injection drug users. *Clin Infect Dis* 2007;45(5):583-8.
- 109. De Rosa FG, Bargiacchi O, Audagnotto S, Garazzino S, Cariti G, Raiteri R, et al. Dosedependent and genotype-independent sustained virological response of a 12 week pegylated interferon alpha-2b treatment for acute hepatitis C. *J Antimicrob Chemother* 2006;57(2):360-3.
- 110. Freeman AJ, Zekry A, Whybin LR, Harvey CE, van Beek IA, de Kantzow SL, et al. Hepatitis C prevalence among Australian injecting drug users in the 1970s and profiles of virus genotypes in the 1970s and 1990s. *Med J Aust* 2000;172(12):588-91.
- 111. Hawthorne G, Richardson J, Day NA. A comparison of the Assessment of Quality of Life (AQoL) with four other generic utility instruments. *Ann Med* 2001;33(5):358-70.

Appendix A: Additional results and tables for Australia

Table A.1. Health impact of hepatitis C treatment strategies in Australia, 2010-2013

	HCV treatment scenarios						
Description		increme	ntal, relative t	o the current	scenario*		
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Average number of HCV cases	3,362	2,492	4,987	6,188	8,708		
treated per year							
Health effects [*] 2010-2013	Health effects* 2010-2013						
Life years lost / gained	19,198	-28	34	49	70		
Number of treatment gains		-2,287	3,145	4,961	8,014		
(Sustained virological response)							
HCV cases / cases averted	46,877	-99	142	225	368		
Liver failure cases / cases averted	922	-8	9	12	17		
HCC cases / cases averted	490	-2	3	4	6		
HCV-related liver transplant	178	0	0	0	1		
cases / cases averted							
Liver-related deaths / deaths	973	-1	2	2	4		
averted							

Undiscounted health outcomes.

*Incremental refers to the difference in effect, between current scenario and alternative scenario. Positive indicates increased benefit relative to current treatment scenario.

HCV, hepatitis C virus; SVR, sustained virological response; HCC, hepatocellular carcinoma.

	HCV treatment scenarios						
Description		Incremental \$, relative to the current scenario ⁺					
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Costs: (undiscounted)							
Health sector costs ⁺							
Drug costs*	336,076,246	-34,585,530	48,798,192	77,047,113	124,538,732		
Other costs	409,734,567	-8,174,877	11,539,058	18,248,970	29,549,723		
Total	745,810,813	-42,760,406	60,337,250	95,296,083	154,088,455		
Treated (% Total)	58%	55%	61%	63%	66%		
Patient/family costs ⁺	1,846,367,371	-2,420,856	3,121,776	4,970,327	7,967,795		
Treated	8%	7%	9%	10%	11%		
Productivity costs ⁺	1,647,407,100	3,478,903	-4,994,327	-7,916,016	-12,942,022		
Total costs	4,239,585,284	-41,702,360	58,464,699	92,350,394	149,114,228		
Costs: (3% discount)							
Health sector costs ⁺							
Drug costs*	321,629,746	-32,018,668	45,239,007	71,434,344	115,484,686		
Other costs	392,042,392	-7,571,977	10,703,396	16,928,901	27,416,506		
Total	713,672,139	-39,590,645	55,942,403	88,363,245	142,901,192		
Patient/family costs ⁺	1,767,118,927	-2,278,620	2,952,901	4,701,663	7,542,662		
Productivity costs ⁺	1,041,966,978	2,127,082	-3,056,080	-4,843,858	-7,920,252		
Total costs	3,522,758,044	-39,742,183	55,839,224	88,221,050	142,523,602		
Costs: (5% discount)							
Health sector costs ⁺							
Drug costs*	312,749,031	-30,455,244	43,068,938	68,011,937	109,963,274		
Other costs	381,166,334	-7,204,626	10,193,667	16,123,643	26,115,059		
Total	693,915,365	-37,659,870	53,262,605	84,135,580	136,078,333		
Patient/family costs ⁺	1,718,401,262	-2,190,799	2,848,053	4,534,847	7,278,459		
Productivity costs ⁺	856,285,434	1,709,154	-2,456,916	-3,894,169	-6,367,908		
Total costs ⁺	3,268,602,060	-38,141,515	53,653,742	84,776,257	136,988,884		

Table A.2. Costs associated with	hepatitis	C treatment strategies ir	n Australia, 2010-2013
----------------------------------	-----------	---------------------------	------------------------

Hncremental costs for each alternative treatment scenario relative to current treatment scenario. Positive value indicates increase in cost. *Pegylated interferon and ribavirin costs. Costs are expressed in 2008 Australian dollars.

Table A.3. Health in	pact of he	patitis C treatment strate	gies in Australia	, 2010-2079
----------------------	------------	----------------------------	-------------------	-------------

	HCV treatment scenarios					
Description		incremental, relative to the current scenario				
	Current	Reduction	Increased	Increased	Increased	
	scenario	scenario	scenario 1	scenario 2	scenario 3	
Average number of HCV cases	3,466	1,996	5,887	7,757	11,848	
treated per year						
Health effects* 2010-2069						
Life years lost / gained	370,430	-92,124	52,034	71,064	94,115	
Number of treatment gains		-57,894	49,660	72,272	100,454	
(Sustained virological response)						
HCV cases / cases averted	817,514	-2,028	7,371	13,689	25,923	
Liver failure cases / cases averted	17,524	-4,808	2,702	3,691	4,885	
HCC cases / cases averted	9,379	-2,486	1,400	1,912	2,531	
HCV-related liver transplant	3,432	-878	495	677	896	
cases / cases averted						
Liver-related deaths / deaths	18,765	-4,667	2,636	3,600	4,768	
averted						

	HCV treatment scenarios							
Description		Incremental \$, relative to the current scenario ⁺						
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario 1	scenario 2	scenario 3			
Total number of	242,638	139,725	412,095	542,979	829,338			
HCV cases treated								
Costs: (undiscounted)	-						
Health sector costs ⁺								
Drug costs*	6,056,130,457	-1,039,209,126	880,049,341	1,281,249,916	1,781,754,566			
Other costs	7,474,392,061	522,897,368	-368,134,083	-532,281,755	-764,132,911			
Total	13,530,522,518	-516,311,759	511,915,258	748,968,161	1,017,621,655			
Treated (% Total)	58%	50%	64%	66%	69%			
Patient/family			-	-				
costs ⁺	32,838,967,772	2,946,138,029	2,795,857,131	4,200,595,635	-6,185,210,037			
Treated	8%	6%	10%	11%	13%			
Productivity costs ⁺	28,730,196,033	71,269,382	-259,056,506	-481,093,149	-911,019,396			
Total costs			-	-				
	75,099,686,322	2,501,095,652	2,542,998,379	3,932,720,623	-6,078,607,778			
Costs: (3% discount)								
Health sector costs ⁺								
Drug costs*	2,583,676,759	-455,916,334	418,336,592	618,267,931	888,789,160			
Other costs	3,177,256,881	128,068,524	-87,364,633	-125,055,645	-178,710,462			
Total	5,760,933,640	-327,847,810	330,971,959	493,212,286	710,078,697			
Patient/family				-				
costs [†]	14,033,377,000	958,967,807	-943,102,239	1,421,448,246	-2,114,631,919			
Productivity costs [†]	8,138,092,188	25,703,401	-66,666,986	-119,765,372	-221,554,077			
Total costs				-				
	27,932,402,829	656,823,399	-678,797,266	1,048,001,332	-1,626,107,299			
Costs: (5% discount)		•						
Health sector costs ⁺								
Drug costs*	1,743,911,622	-309,099,625	297,777,829	443,784,146	648,998,671			
Other costs	2,140,282,607	51,482,249	-31,919,680	-44,601,944	-62,415,229			
Total	3,884,194,229	-257,617,376	265,858,149	399,182,202	586,583,443			
Patient/family	9,484,136,562	526,914,422	-532,244,127	-804,256,229	-1,204,656,538			
costs [†]								
Productivity costs ⁺	4,657,419,584	16,770,332	-36,215,051	-63,533,246	-115,234,990			
Total costs ⁺	18,025,750,375	286,067,378	-302,601,028	-468,607,273	-733,308,085			

Table A.4. Costs associated with hepatitis C treatment strategies in Australia, 2010-2079

Table A.5. Cost-effectiveness and cost-utility analysis, Australia (2010-2079: 5% discount) from a health sector perspective: incremental cost per LY gained, incremental cost per SVR achieved, and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(LY lost)⁺	effect ^s	(\$/LY)
Reduction scenario	3,626,576,853		117,838		
Current scenario	3,884,194,229	257,617,376	103,862	13,976	\$18,433
Increased scenario 1	4,150,052,378	265,858,149	95,396	8,466	\$31,403
Increased scenario 2	4,283,376,431	399,182,202	92,309	11,553	\$34,553
Increased scenario 3	4,470,777,672	586,583,443	88,554	15,308	\$38,320
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(SVR)	effect	(\$/SVR)
Reduction scenario	3,626,576,853		71,922		
Current scenario	3,884,194,229	257,617,376	88,992	17,069	15,092
Increased scenario 1	4,150,052,378	265,858,149	105,597	16,605	16,011
Increased scenario 2	4,283,376,431	399,182,202	113,731	24,740	16,135
Increased scenario 3	4,470,777,672	586,583,443	125,151	36,160	16,222
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect*	(\$/QALY)
Reduction scenario	3,626,576,853		7,830,274		
Current scenario	3,884,194,229	257,617,376	7,853,252	22,978	11,212
Increased scenario 1	4,150,052,378	265,858,149	7,876,690	23,439	11,343
Increased scenario 2	4,283,376,431	399,182,202	7,888,719	35,467	11,255
Increased scenario 3	4,470,777,672	586,583,443	7,906,450	53,198	11,026

Table A.6. Sensitivity analysis: increase in health sector cost, including drug cost versus total cost savings, 2010-2039

	HCV treatment scenarios							
Health sector cost	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3			
Base case	14,298,244,303	78,118,048	-104,387,287	-166,103,554	-273,832,780			
10% increase	14,605,544,136	53,703,429	-79,194,474	-128,107,692	-217,143,037			
20% increase	14,912,843,969	29,288,809	-54,001,662	-90,111,829	-160,453,294			
30% increase	15,220,143,803	4,874,190	-28,808,849	-52,115,966	-103,763,551			
40% increase	15,527,443,636	-19,540,430	-3,616,036	-14,120,104	-47,073,808			
50% increase	15,834,743,470	-43,955,050	21,576,777	23,875,759	9,615,935			

Appendix B: Additional results and tables for ACT

	HCV treatment scenarios					
Description		incremental, relative to the current scenario				
	Current	Reduction	Increased	Increased	Increased	
	scenario	scenario	scenario 1	scenario 2	scenario 3	
Average number of HCV cases	46	34	67	84	118	
treated per year						
Health effects [*] 2010-2013						
Life years lost / gained	260	0	0	1	1	
Number of treatment gains						
(Sustained virological response)		-31	41	67	109	
HCV cases / cases averted	636	-1	2	3	5	
Liver failure cases / cases averted	13	0	0	0	0	
HCC cases / cases averted	7	0	0	0	0	
HCV-related liver transplant						
cases / cases averted	2	0	0	0	0	
Liver-related deaths / deaths						
averted	13	0	0	0	0	

Table B.1. Health impact of hepatitis C treatment strategies in ACT, 2010-2013

Table B.2. Costs associated	l with hepatitis C treatment	t strategies in ACT, 2010-2013
-----------------------------	------------------------------	--------------------------------

	HCV treatment scenarios							
Description		Incremental \$, relative to the current scenario ⁺						
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario 1	scenario 2	scenario 3			
Costs: (undiscounted)								
Health sector costs ⁺								
Drug costs*	4,557,111	-468,438	636,852	1,042,812	1,690,543			
Other costs	5,555,899	-110,743	151,392	247,066	401,034			
Total	10,113,010	-579,181	788,243	1,289,878	2,091,577			
Patient/family costs ⁺	25,036,283	-32,869	46,372	67,823	107,604			
Productivity costs ⁺	22,338,381	47,216	-63,190	-106,816	-175,783			
Total costs	57,487,674	-564,834	771,426	1,250,885	2,023,397			
Costs: (3% discount)								
Health sector costs ⁺								
Drug costs*	4,361,220	-433,664	590,027	966,814	1,567,670			
Other costs	5,315,998	-102,574	140,335	229,187	372,090			
Total	9,677,217	-536,238	730,362	1,196,001	1,939,760			
Patient/family costs ⁺	23,961,695	-30,936	43,681	64,140	101,880			
Productivity costs ⁺	14,128,788	28,866	-38,631	-65,360	-107,583			
Total costs	47,767,701	-538,308	735,412	1,194,780	1,934,058			
Costs: (5% discount)								
Health sector costs ⁺								
Drug costs*	4,240,799	-412,484	561,492	920,475	1,492,737			
Other costs	5,168,521	-97,597	133,594	218,280	354,432			
Total	9,409,320	-510,080	695,086	1,138,756	1,847,169			
Patient/family costs ⁺	23,301,096	-29,742	42,018	61,854	98,323			
Productivity costs ⁺	11,611,001	23,192	-31,039	-52,545	-86,500			
Total costs ⁺	44,321,417	-516,630	706,065	1,148,064	1,858,992			

	HCV treatment scenarios					
Description		incremental, relative to the current scenario				
	Current	Reduction	Increased	Increased	Increased	
	scenario	scenario	scenario 1	scenario 2	scenario 3	
Average number of HCV cases	47	27	80	105	161	
treated per year						
Health effects [*] 2010-2069						
Life years lost / gained	5,023	-1,249	704	964	1,276	
Number of treatment gains		-785	673	980	1,362	
(Sustained virological response)						
HCV cases / cases averted	11,085	-28	100	186	352	
Liver failure cases / cases averted	238	-65	37	50	66	
HCC cases / cases averted	127	-34	19	26	34	
HCV-related liver transplant	47	-12	7	9	12	
cases / cases averted						
Liver-related deaths / deaths	254	-63	36	49	65	
averted						

Table 5.5. Health impact of nepatitis C treatment strategies in AC1, 2010-207	able B.3. He	alth impact of	hepatitis C	treatment	strategies i	n ACT, 2	2010-207
---	--------------	----------------	-------------	-----------	--------------	----------	----------

Table B.4.	Costs	associated	with I	nepatitis	С	treatment	strates	zies	in .	ACT.	2010	-20	79
	0505	ussociated	vvitti i	reputitis	\sim	ucument	Suuce	5103		$n \subset I$	2010	20	, ,

	HCV treatment scenarios						
Description		Incren	nental \$, relative	e to the current sc	enario⁺		
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Total number of HCV	3,290	1,895	5,586	7,362	11,246		
cases treated							
Costs: (undiscounted)							
Health sector costs ⁺							
Drug costs*	82,119,621	-14,091,283	11,931,272	17,373,654	24,159,732		
Other costs	101,350,962	7,089,977	-4,980,201	-7,216,628	-10,362,514		
Total	183,470,583	-7,001,306	6,951,071	10,157,026	13,797,218		
Treated (% Total)	58%	50%	64%	66%	69%		
Patient/family costs ⁺	445,288,100	39,947,943	-37,856,035	-56,954,194	-83,874,116		
Treated	8%	6%	10%	11%	13%		
Productivity costs ⁺	389,574,176	966,564	-3,507,703	-6,522,776	-12,353,574		
Total costs	1,018,332,859	33,913,201	-34,412,666	-53,319,944	-82,430,472		
Costs: (3% discount)							
Health sector costs ⁺							
Drug costs*	35,034,013	-6,181,889	5,665,827	8,383,326	12,051,782		
Other costs	43,082,847	1,736,381	-1,178,568	-1,695,178	-2,423,888		
Total	78,116,860	-4,445,508	4,487,259	6,688,148	9,627,894		
Patient/family costs ⁺	190,289,028	13,002,679	-12,749,429	-19,271,058	-28,676,950		
Productivity costs ⁺	110,350,552	348,506	-901,390	-1,623,722	-3,004,517		
Total costs	378,756,440	8,905,677	-9,163,560	-14,206,631	-22,053,572		
Costs: (5% discount)							
Health sector costs ⁺							
Drug costs*	23,647,007	-4,191,058	4,029,234	6,017,183	8,800,473		
Other costs	29,021,726	697,954	-428,789	-604,412	-846,786		
Total	52,668,733	-3,493,104	3,600,445	5,412,772	7,953,687		
Patient/family costs ⁺	128,602,476	7,144,264	-7,185,042	-10,902,667	-16,337,418		
Productivity costs ⁺	63,153,504	227,362	-488,990	-861,300	-1,562,803		
Total costs ⁺	244,424,713	3,878,522	-4,073,587	-6,351,195	-9,946,534		

Table B.5. Cost-effectiveness and cost-utility analysis, ACT (2010-2079: 5% discount) from a health sector perspective: incremental cost per LY gained, incremental cost per SVR achieved, and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
Deduction compris	40.175 (20)		(LT IUSI) ¹	enect	(\$/11)
Reduction scenario	49,175,629		1,598		
Current scenario	52,668,733	3,493,104	1,408	189	\$18,433
Increased scenario 1	56,269,178	3,600,445	1,294	114	\$31,498
Increased scenario 2	58,081,504	5,412,772	1,252	157	\$34,561
Increased scenario 3	60,622,419	7,953,687	1,201	208	\$38,313
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(SVR)	effect	(\$/SVR)
Reduction scenario	49,175,629		975		
Current scenario	52,668,733	3,493,104	1,207	231	15,093
Increased scenario 1	56,269,178	3,600,445	1,431	224	16,056
Increased scenario 2	58,081,504	5,412,772	1,542	335	16,139
Increased scenario 3	60,622,419	7,953,687	1,697	490	16,219
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect ⁺	(\$/QALY)
Reduction scenario	49,175,629		106,177		
Current scenario	52,668,733	3,493,104	106,488	312	11,212
Increased scenario 1	56,269,178	3,600,445	106,805	316	11,378
Increased scenario 2	58,081,504	5,412,772	106,969	481	11,258
Increased scenario 3	60,622,419	7,953,687	107,210	721	11,024

Appendix C: Additional results and tables for NSW

Table C.1. Health impact of hepatitis C treatment strategies in NSW, 2010-2013

	HCV treatment scenarios						
Description		incremental, relative to the current scenario					
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3		
Average number of HCV cases							
treated per year	1,019	757	1,513	1,874	2,641		
Health effects [*] 2010-2013							
Life years lost / gained	5,820	-8	10	15	21		
Number of treatment gains (Sustained virological response)		-688	955	1,500	2,432		
HCV cases / cases averted	14,212	-30	43	68	112		
Liver failure cases / cases averted	280	-2	3	4	5		
HCC cases / cases averted	149	-1	1	1	2		
HCV-related liver transplant cases / cases averted	54	0	0	0	0		
Liver-related deaths / deaths averted	295	0	1	1	1		

Table C.2. Costs associated with hepatitis C treatment strategies in NSW, 2010-2013

	HCV treatment scenarios							
Description		Incren	nental \$, relative	to the current sc	enario [†]			
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario 1	scenario 2	scenario 3			
Costs: (undiscounted)								
Health sector costs ⁺								
Drug costs*	101,887,576	-10,399,686	14,839,687	23,300,872	37,781,534			
Other costs	124,218,173	-2,460,295	3,508,476	5,521,094	8,963,390			
Total	226,105,749	-12,859,982	18,348,162	28,821,966	46,744,924			
Patient/family costs ⁺	559,760,041	-742,529	944,649	1,518,537	2,409,362			
Productivity costs ⁺	499,443,218	1,042,979	-1,518,373	-2,387,572	-3,928,648			
Total costs	1,285,309,008	-12,559,532	17,774,439	27,952,931	45,225,637			
Costs: (3% discount)								
Health sector costs ⁺								
Drug costs*	97,507,860	-9,626,647	13,757,966	21,602,539	35,035,224			
Other costs	118,854,472	-2,278,551	3,254,551	5,121,494	8,316,425			
Total	216,362,332	-11,905,198	17,012,517	26,724,033	43,351,650			
Patient/family costs ⁺	535,734,453	-698,469	893,734	1,435,966	2,281,059			
Productivity costs ⁺	315,892,457	637,584	-929,152	-1,460,881	-2,404,321			
Total costs	1,067,989,242	-11,966,084	16,977,099	26,699,118	43,228,387			
Costs: (5% discount)								
Health sector costs ⁺								
Drug costs*	94,815,512	-9,155,848	13,098,408	20,567,007	33,360,432			
Other costs	115,557,199	-2,167,824	3,099,659	4,877,741	7,921,717			
Total	210,372,711	-11,323,671	16,198,067	25,444,748	41,282,149			
Patient/family costs ⁺	520,964,819	-671,282	862,115	1,384,717	2,201,313			
Productivity costs ⁺	259,599,547	512,249	-747,009	-1,174,412	-1,933,119			
Total costs ⁺	990,937,076	-11,482,704	16,313,173	25,655,052	41,550,343			

78

	HCV treatment scenarios							
Description		incremental, relative to the current scenario						
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3			
Average number of HCV cases treated per year	1,051	605	1,785	2,352	3,592			
Health effects [*] 2010-2069								
Life years lost / gained	112,303	-27,923	15,776	21,542	28,534			
Number of treatment gains (Sustained virological response)		-17,549	15,056	21,909	30,455			
HCV cases / cases averted	247,844	-615	2,235	4,150	7,859			
Liver failure cases / cases averted	5,313	-1,457	819	1,119	1,481			
HCC cases / cases averted	2,843	-754	424	579	767			
HCV-related liver transplant cases / cases averted	1,040	-266	150	205	272			
Liver-related deaths / deaths averted	5,689	-1,415	799	1,091	1,445			

Table C.3. Health impact of hepatitis C treatment strategies in NSW, 2010-2079

Table C.4. Costs associated with hepatitis C treatment strategies in NSW, 2010-2079

	HCV treatment scenarios						
Description		Increi	mental \$, relative	e to the current so	enario ⁺		
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Total number of							
HCV cases treated	73,560	42,365	124,937	164,607	251,432		
Costs: (undiscounted)							
Health sector costs ⁺							
Drug costs*	1,836,024,626	-315,025,696	266,824,950	388,437,559	540,161,424		
Other costs	2,265,997,321	158,479,257	-111,616,628	-161,342,573	-231,676,813		
Total	4,102,021,947	-156,546,439	155,208,322	227,094,986	308,484,611		
Treated (% Total)	58%	50%	64%	66%	69%		
Patient/family costs ⁺	9,955,719,994	892,990,286	-847,673,189	-1,273,347,550	-1,875,215,335		
Treated	8%	6%	10%	11%	13%		
Productivity costs ⁺	8,710,073,107	21,601,342	-78,538,578	-145,832,784	-276,195,545		
Total costs	22,767,815,048	758,045,190	-771,003,446	-1,192,085,347	-1,842,926,269		
Costs: (3% discount)							
Health sector costs ⁺							
Drug costs*	783,287,992	-138,178,833	126,852,239	187,429,694	269,449,703		
Other costs	963,242,829	38,803,652	-26,489,387	-37,897,224	-54,188,736		
Total	1,746,530,821	-99,375,181	100,362,852	149,532,470	215,260,967		
Patient/family costs ⁺	4,254,469,440	290,601,483	-285,960,292	-430,839,999	-641,131,607		
Productivity costs ⁺	2,467,210,515	7,788,379	-20,214,164	-36,301,282	-67,172,140		
Total costs	8,468,210,775	199,014,682	-205,811,604	-317,608,811	-493,042,780		
Costs: (5% discount)							
Health sector costs ⁺							
Drug costs*	528,698,123	-93,664,775	90,303,913	134,526,615	196,755,849		
Other costs	648,865,280	15,593,517	-9,677,885	-13,511,047	-18,929,272		
Total	1,177,563,403	-78,071,258	80,626,029	121,015,568	177,826,577		
Patient/family costs ⁺	2,875,285,944	159,640,314	-161,393,822	-243,743,821	-365,249,530		
Productivity costs ⁺	1,411,982,103	5,080,269	-10,981,822	-19,255,425	-34,938,931		
Total costs ⁺	5,464,831,451	86,649,325	-91,749,615	-141,983,679	-222,361,884		

Table C.5. Cost-effectiveness and cost-utility analysis, NSW (2010-2079: 5% discount) from a health sector perspective: incremental cost per LY gained, incremental cost per SVR achieved, and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	
Paduction connerio	1 000 402 145		(LT IUSI) ¹	enect	(\$/LT)
Reduction scenario	1,099,492,145		33,722		
Current scenario	1,177,563,403	78,071,258	31,487	4,235	\$18,437
Increased scenario 1	1,258,189,432	80,626,029	28,920	2,567	\$31,406
Increased scenario 2	1,298,578,971	121,015,568	27,986	3,501	\$34,562
Increased scenario 3	1,355,389,981	177,826,577	26,846	4,641	\$38,315
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(SVR)	effect	(\$/SVR)
Reduction scenario	1,099,492,145		21,808		
Current scenario	1,177,563,403	78,071,258	26,979	5,172	15,096
Increased scenario 1	1,258,189,432	80,626,029	32,015	5,035	16,013
Increased scenario 2	1,298,578,971	121,015,568	34,477	7,498	16,140
Increased scenario 3	1,355,389,981	177,826,577	37,943	10,963	16,220
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect*	(\$/QALY)
Reduction scenario	1,099,492,145		2,373,893		-
Current scenario	1,177,563,403	78,071,258	2,380,854	6,961	11,215
Increased scenario 1	1,258,189,432	80,626,029	2,387,962	7,107	11,344
Increased scenario 2	1,298,578,971	121,015,568	2,391,603	10,749	11,258
Increased scenario 3	1,355,389,981	177,826,577	2,396,984	16,130	11,025

Appendix D: Additional results and tables for NT

	HCV treatment scenarios							
Description		incremental, relative to the current scenario						
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3			
Average number of HCV cases								
treated per year	35	26	51	64	90			
Health effects [*] 2010-2013								
Life years lost / gained	198	0	0	1	1			
Number of treatment gains (Sustained virological response)		-23	32	51	82			
HCV cases / cases averted	484	-1	1	2	4			
Liver failure cases / cases averted	10	0	0	0	0			
HCC cases / cases averted	5	0	0	0	0			
HCV-related liver transplant cases / cases averted	2	0	0	0	0			
Liver-related deaths / deaths averted	10	0	0	0	0			

Table D.1. Health impact of hepatitis C treatment strategies in NT, 2010-2013

Table D.2. Costs a	ssociated with	hepatitis C treatme	nt strategies in N	T, 2010-2013
			· · · · · · · · · · · · · · · · · · ·	

	HCV treatment scenarios					
Description	Incremental \$, relative to the current scenario ⁺					
	Current	Reduction	Increased	Increased	Increased	
	scenario	scenario	scenario 1	scenario 2	scenario 3	
Costs: (undiscounted)						
Health sector costs ⁺						
Drug costs*	3,468,433	-350,230	503,070	797,295	1,281,828	
Other costs	4,228,605	-82,949	118,986	188,785	304,300	
Total	7,697,038	-433,179	622,056	986,080	1,586,128	
Patient/family costs ⁺	19,055,222	-25,680	32,347	50,994	83,088	
Productivity costs ⁺	17,001,883	34,952	-51,391	-82,019	-132,748	
Total costs	43,754,142	-423,907	603,012	955,054	1,536,468	
Costs: (3% discount)						
Health sector costs ⁺						
Drug costs*	3,319,340	-324,143	466,369	739,244	1,188,581	
Other costs	4,046,015	-76,808	110,366	175,137	282,318	
Total	7,365,355	-400,950	576,736	914,381	1,470,899	
Patient/family costs ⁺	18,237,348	-24,137	30,592	48,252	78,620	
Productivity costs ⁺	10,753,506	21,363	-31,445	-50,191	-81,231	
Total costs	36,356,208	-403,725	575,882	912,442	1,468,288	
Costs: (5% discount)						
Health sector costs ⁺						
Drug costs*	3,227,687	-308,256	443,992	703,847	1,131,719	
Other costs	3,933,770	-73,067	105,109	166,811	268,907	
Total	7,161,457	-381,324	549,101	870,658	1,400,626	
Patient/family costs ⁺	17,734,563	-23,186	29,503	46,549	75,845	
Productivity costs ⁺	8,837,200	17,161	-25,279	-40,351	-65,306	
Total costs ⁺	33,733,221	-387,348	553,325	876,855	1,411,165	

	HCV treatment scenarios					
Description		incremental, relative to the current scenario				
	Current	Reduction	Increased	Increased	Increased	
	scenario	scenario	scenario 1	scenario 2	scenario 3	
Average number of HCV cases	36	21	61	80	122	
treated per year						
Health effects* 2010-2069						
Life years lost / gained	3,823	-950	537	733	971	
Number of treatment gains		-597	512	746	1,037	
(Sustained virological response)						
HCV cases / cases averted	8,437	-21	76	141	267	
Liver failure cases / cases averted	181	-50	28	38	50	
HCC cases / cases averted	97	-26	14	20	26	
HCV-related liver transplant	35	-9	5	7	9	
cases / cases averted						
Liver-related deaths / deaths	194	-48	27	37	49	
averted						

Table D.3. Health impact	t of hepatitis C treatme	ent strategies in NT, 2010-2079
--------------------------	--------------------------	---------------------------------

Table D.4. C	osts associated v	with hepatitis	C treatment strategies	in NT,	2010-2079

	HCV treatment scenarios						
Description		Incren	nental \$, relative	e to the current so	enario ⁺		
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Total number of HCV	2,504	1,442	4,253	5,604	8,559		
cases treated							
Costs: (undiscounted)							
Health sector costs ⁺							
Drug costs*	62,501,519	-10,722,736	9,082,693	13,223,192	18,389,176		
Other costs	77,138,529	5,392,788	-3,798,906	-5,494,212	-7,884,273		
Total	139,640,048	-5,329,948	5,283,786	7,728,980	10,504,903		
Treated (% Total)	58%	50%	64%	66%	69%		
Patient/family costs ⁺	338,910,315	30,390,059	-28,852,647	-43,355,793	-63,825,301		
Treated	8%	6%	10%	11%	13%		
Productivity costs ⁺	296,506,217	735,313	-2,673,269	-4,965,354	-9,400,755		
Total costs	775,056,580	25,795,424	-26,242,130	-40,592,166	-62,721,153		
Costs: (3% discount)							
Health sector costs ⁺							
Drug costs*	26,664,506	-4,702,042	4,317,467	6,381,358	9,172,563		
Other costs	32,790,476	1,319,944	-901,409	-1,291,056	-1,843,276		
Total	59,454,982	-3,382,097	3,416,059	5,090,302	7,329,287		
Patient/family costs ⁺	144,829,668	9,886,611	-9,732,037	-14,672,798	-21,817,771		
Productivity costs ⁺	83,988,167	264,985	-687,947	-1,236,248	-2,285,933		
Total costs	288,272,817	6,769,498	-7,003,925	-10,818,743	-16,774,416		
Costs: (5% discount)							
Health sector costs ⁺							
Drug costs*	17,997,817	-3,186,531	3,073,182	4,580,769	6,697,471		
Other costs	22,088,512	530,214	-329,255	-460,588	-643,366		
Total	40,086,329	-2,656,316	2,743,927	4,120,180	6,054,105		
Patient/family costs ⁺	97,879,823	5,429,622	-5,492,028	-8,302,652	-12,427,465		
Productivity costs [†]	48,066,334	172,789	-373,695	-655,871	-1,188,824		
Total costs ⁺	186,032,487	2,946,095	-3,121,796	-4,838,343	-7,562,184		

Table D.5. Cost-effectiveness and cost-utility analysis, NT (2010-2079: 5% discount) from a health sector perspective: incremental cost per LY gained, incremental cost per SVR achieved, and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
	27 420 012			enect	(\$/LY)
Reduction scenario	37,430,013		1,216		
Current scenario	40,086,329	2,656,316	1,072	144	\$18,442
Increased scenario 1	42,830,257	2,743,927	985	87	\$31,410
Increased scenario 2	44,206,510	4,120,180	953	119	\$34,547
Increased scenario 3	46,140,435	6,054,105	914	158	\$38,337
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(SVR)	effect	(\$/SVR)
Reduction scenario	37,430,013		743		
Current scenario	40,086,329	2,656,316	918	176	15,101
Increased scenario 1	42,830,257	2,743,927	1,090	171	16,014
Increased scenario 2	44,206,510	4,120,180	1,174	255	16,133
Increased scenario 3	46,140,435	6,054,105	1,291	373	16,229
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect ⁺	(\$/QALY)
Reduction scenario	37,430,013		80,812		
Current scenario	40,086,329	2,656,316	81,048	237	11,219
Increased scenario 1	42,830,257	2,743,927	81,290	242	11,345
Increased scenario 2	44,206,510	4,120,180	81,415	366	11,253
Increased scenario 3	46,140,435	6,054,105	81,597	549	11,031

Appendix E: Additional results and tables for QLD

	HCV treatment scenarios					
Description		increme	ntal, relative t	to the current	scenario	
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3	
Average number of HCV cases						
treated per year	760	562	1,129	1,397	1,971	
Health effects [*] 2010-2013						
Life years lost / gained	4,340	-6	8	11	16	
Number of treatment gains (Sustained virological response)		-521	714	1,119	1,816	
HCV cases / cases averted	10,596	-23	32	51	84	
Liver failure cases / cases averted	208	-2	2	3	4	
HCC cases / cases averted	111	-1	1	1	1	
HCV-related liver transplant cases / cases averted	40	0	0	0	0	
Liver-related deaths / deaths averted	220	0	0	1	1	

Table E.2. Costs associated with hepatitis C treatment strategies in QLD, 2010-2013

	HCV treatment scenarios						
Description		Incremental \$, relative to the current scenario ⁺					
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Costs: (undiscounted)							
Health sector costs ⁺							
Drug costs*	75,967,593	-7,885,763	11,079,522	17,379,935	28,207,937		
Other costs	92,617,360	-1,862,296	2,618,298	4,117,968	6,690,501		
Total	168,584,954	-9,748,059	13,697,820	21,497,904	34,898,438		
Patient/family costs ⁺	417,358,243	-541,064	696,957	1,130,612	1,786,589		
Productivity costs ⁺	372,384,522	796,269	-1,137,596	-1,781,740	-2,938,150		
Total costs	958,327,718	-9,492,855	13,257,181	20,846,775	33,746,877		
Costs: (3% discount)							
Health sector costs ⁺							
Drug costs*	72,702,067	-7,301,460	10,272,144	16,113,271	26,158,156		
Other costs	88,618,179	-1,725,189	2,428,861	3,819,949	6,207,748		
Total	161,320,246	-9,026,649	12,701,005	19,933,220	32,365,904		
Patient/family costs ⁺	399,444,696	-509,609	659,627	1,069,196	1,691,839		
Productivity costs ⁺	235,529,126	486,950	-696,168	-1,090,173	-1,798,191		
Total costs	796,294,068	-9,049,308	12,664,464	19,912,243	32,259,553		
Costs: (5% discount)							
Health sector costs ⁺							
Drug costs*	70,694,646	-6,945,539	9,779,851	15,340,939	24,908,107		
Other costs	86,159,729	-1,641,639	2,313,303	3,638,159	5,913,218		
Total	156,854,375	-8,587,178	12,093,154	18,979,097	30,821,326		
Patient/family costs ⁺	388,432,415	-490,176	636,436	1,031,075	1,632,933		
Productivity costs ⁺	193,557,144	391,324	-559,713	-876,388	-1,445,806		
Total costs ⁺	738,843,933	-8,686,030	12,169,877	19,133,784	31,008,452		

	HCV treatment scenarios					
Description		incremental, relative to the current scenario				
	Current	Reduction	Increased	Increased	Increased	
	scenario	scenario	scenario 1	scenario 2	scenario 3	
Average number of HCV cases	784	451	1,331	1,753	2,678	
treated per year						
Health effects [*] 2010-2069						
Life years lost / gained	83,733	-20,829	11,764	16,062	21,276	
Number of treatment gains		-13,088	11,226	16,336	22,708	
(Sustained virological response)						
HCV cases / cases averted	184,793	-459	1,667	3,094	5,860	
Liver failure cases / cases averted	3,961	-1,087	611	834	1,104	
HCC cases / cases averted	2,120	-562	316	432	572	
HCV-related liver transplant	776	-199	112	153	203	
cases / cases averted						
Liver-related deaths / deaths	4,242	-1,055	596	814	1,078	
averted						

Table E.3. Health impact of hepatitis C treatment strategies in QLD, 2010-2079

Table F.4. C	Costs associated v	vith hepatitis	C treatment strat	tegies in (DLD. 2010-2079
		man nepatitis	C treatment stra	iegies in c	200, 2010, 2075

	HCV treatment scenarios								
Description		Increr	nental \$, relative	e to the current so	cenario ⁺				
	Current	Reduction	Increased	Increased	Increased				
	scenario	scenario	scenario 1	scenario 2	scenario 3				
Total number of HCV	54,847	31,580	93,156	122,732	187,473				
cases treated									
Costs: (undiscounted)									
Health sector costs [†]									
Drug costs*	1,368,944,024	-234,930,717	198,935,691	289,621,030	402,734,841				
Other costs	1,689,532,005	118,232,130	-83,237,313	-120,299,802	-172,759,467				
Total	3,058,476,029	-116,698,588	115,698,378	169,321,228	229,975,374				
Treated (% Total)	58%	50%	64%	66%	69%				
Patient/family costs ⁺	7,423,008,063	666,107,195	-632,093,077	-949,428,205	-1,398,258,542				
Treated	8%	6%	10%	11%	13%				
Productivity costs ⁺	6,494,250,355	16,115,616	-58,566,451	-108,737,366	-205,947,137				
Total costs	16,975,734,447	565,524,223	-574,961,150	-888,844,343	-1,374,230,305				
Costs: (3% discount)									
Health sector costs [†]									
Drug costs*	584,021,259	-103,090,289	94,577,877	139,750,309	200,901,562				
Other costs	718,195,684	28,965,378	-19,760,027	-28,257,471	-40,415,339				
Total	1,302,216,942	-74,124,911	74,817,850	111,492,838	160,486,222				
Patient/family costs ⁺	3,172,142,428	216,870,406	-213,259,576	-321,247,424	-478,096,732				
Productivity costs ⁺	1,839,556,566	5,812,955	-15,074,791	-27,067,282	-50,090,171				
Total costs	6,313,915,936	148,558,451	-153,516,518	-236,821,867	-367,700,681				
Costs: (5% discount)									
Health sector costs ⁺									
Drug costs*	394,198,489	-69,906,324	67,329,842	100,306,107	146,705,025				
Other costs	483,795,172	11,647,163	-7,222,985	-10,074,614	-14,122,487				
Total	877,993,661	-58,259,161	60,106,858	90,231,493	132,582,538				
Patient/family costs ⁺	2,143,819,992	119,187,760	-120,374,668	-181,746,005	-272,387,501				
Productivity costs ⁺	1,052,775,943	3,793,508	-8,190,388	-14,357,485	-26,055,356				
Total costs ⁺	4,074,589,596	64,722,107	-68,458,199	-105,871,996	-165,860,320				

Table E.5. Cost-effectiveness and cost-utility analysis, QLD (2010-2079: 5% discount) from a health sector perspective: incremental cost per LY gained, incremental cost per SVR achieved, and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect (LY lost) [‡]	Increased effect [§]	ICER* (\$/LY)
Reduction scenario	819,734,499		26,638		(+, = -)
Current scenario	877,993,661	58,259,161	23,477	3,161	\$18,429
Increased scenario 1	938,100,518	60,106,858	21,562	1,915	\$31,393
Increased scenario 2	968,225,154	90,231,493	20,866	2,611	\$34,561
Increased scenario 3	1,010,576,198	132,582,538	20,016	3,461	\$38,306
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	
			(SVK)	епест	(\$/SVK)
Reduction scenario	819,734,499		16,255		
Current scenario	877,993,661	58,259,161	20,116	3,861	15,090
Increased scenario 1	938,100,518	60,106,858	23,871	3,755	16,006
Increased scenario 2	968,225,154	90,231,493	25,707	5,591	16,139
Increased scenario 3	1,010,576,198	132,582,538	28,292	8,176	16,216
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect*	(\$/QALY)
Reduction scenario	819,734,499		1,769,973		
Current scenario	877,993,661	58,259,161	1,775,170	5,197	11,209
Increased scenario 1	938,100,518	60,106,858	1,780,471	5,301	11,339
Increased scenario 2	968,225,154	90,231,493	1,783,185	8,015	11,258
Increased scenario 3	1,010,576,198	132,582,538	1,787,199	12,029	11,022

Appendix F: Additional results and tables for SA

Table F.1. Health impact of hepatitis C treatment strategies in South Australia, 2010-2	2013
---	------

	HCV treatment scenarios						
Description		incremental, relative to the current scenar					
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3		
Average number of HCV cases							
treated per year	257	192	380	475	667		
Health Effects* 2010-2013							
Life years lost / gained	1,468	-2	2	4	5		
Number of treatment gains (Sustained virological response)		-172	237	383	615		
HCV cases / cases averted	3,585	-7	11	17	28		
Liver failure cases / cases averted	71	-1	1	1	1		
HCC cases / cases averted	37	0	0	0	0		
HCV-related liver transplant cases / cases averted	14	0	0	0	0		
Liver-related deaths / deaths averted	74	0	0	0	0		

Table F.2. Costs associated with hepatitis C treatment strategies in South Australia, 2010-2013

	HCV treatment scenarios						
Description		Incren	nental \$, relative	e to the current so	enario ⁺		
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Costs: (undiscounted)							
Health sector costs ⁺							
Drug costs*	25,699,551	-2,591,152	3,688,757	5,934,493	9,548,078		
Other costs	31,332,187	-613,826	873,989	1,403,843	2,264,334		
Total	57,031,738	-3,204,978	4,562,746	7,338,336	11,812,412		
Patient/family costs ⁺	141,190,562	-190,361	248,147	371,083	603,157		
Productivity costs ⁺	125,976,132	258,697	-372,581	-613,774	-994,953		
Total costs	324,198,432	-3,136,642	4,438,312	7,095,645	11,420,616		
Costs: (3% discount)							
Health sector costs ⁺							
Drug costs*	24,594,836	-2,398,087	3,419,049	5,502,834	8,854,341		
Other costs	29,979,273	-568,370	810,529	1,302,458	2,100,974		
Total	54,574,109	-2,966,457	4,229,578	6,805,291	10,955,314		
Patient/family costs ⁺	135,130,489	-178,906	234,348	351,395	571,224		
Productivity costs ⁺	79,678,560	158,091	-227,923	-375,672	-608,964		
Total costs	269,383,159	-2,987,272	4,236,003	6,781,014	10,917,574		
Costs: (5% discount)							
Health sector costs ⁺							
Drug costs*	23,915,733	-2,280,522	3,254,629	5,239,604	8,431,265		
Other costs	29,147,585	-540,680	771,827	1,240,605	2,001,306		
Total	53,063,318	-2,821,202	4,026,457	6,480,209	10,432,571		
Patient/family costs ⁺	131,405,083	-171,843	225,795	339,155	551,368		
Productivity costs ⁺	65,479,627	126,985	-183,204	-302,072	-489,648		
Total costs ⁺	249,948,029	-2,866,060	4,069,048	6,517,292	10,494,291		

		HCV	HCV treatment scenarios				
Description		incremental, relative to the current scenario					
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Average number of HCV cases	265	153	450	593	906		
treated per year							
Health effects* 2010-2069							
Life years lost / gained	28,327	-7,041	3,977	5,436	7,198		
Number of treatment gains		-4,426	3,796	5,528	7,682		
(Sustained virological response)							
HCV cases / cases averted	62,515	-155	563	1,047	1,983		
Liver failure cases / cases averted	1,340	-367	206	282	374		
HCC cases / cases averted	717	-190	107	146	194		
HCV-related liver transplant	262	-67	38	52	69		
cases / cases averted							
Liver-related deaths / deaths	1,435	-357	201	275	365		
averted							

Table F.3. Health in	npact of hepatitis	C treatment strategies in	South Australia, 2010-2079
----------------------	--------------------	---------------------------	----------------------------

Table F.4. Costs associated with hepatitis C treatment strategies in South Australia,	2010-
2079	

	HCV treatment scenarios							
Description		Incren	nental \$, relative	e to the current sc	enario ⁺			
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario 1	scenario 2	scenario 3			
Total number of HCV	18,554	10,688	31,508	41,526	63,422			
cases treated								
Costs: (undiscounted)								
Health sector costs ⁺								
Drug costs*	463,108,702	-79,448,936	67,299,880	97,973,024	136,242,300			
Other costs	571,562,737	39,956,168	-28,126,299	-40,726,519	-58,447,270			
Total	1,034,671,439	-39,492,768	39,173,580	57,246,504	77,795,030			
Treated (% Total)	58%	50%	64%	66%	69%			
Patient/family costs ⁺	2,511,175,587	225,169,042	-213,685,859	-321,319,439	-473,038,485			
Treated	8%	6%	10%	11%	13%			
Productivity costs ⁺	2,196,980,218	5,448,267	-19,798,988	-36,798,718	-69,672,124			
Total costs	5,742,827,244	191,124,541	-194,311,266	-300,871,653	-464,915,578			
Costs: (3% discount)								
Health sector costs ⁺								
Drug costs*	197,572,223	-34,837,850	31,983,102	47,284,834	67,964,206			
Other costs	242,963,189	9,779,268	-6,667,081	-9,575,865	-13,674,412			
Total	440,535,412	-25,058,582	25,316,021	37,708,969	54,289,794			
Patient/family costs ⁺	1,073,123,501	73,250,378	-72,039,575	-108,770,360	-161,747,514			
Productivity costs ⁺	622,315,300	1,963,236	-5,092,774	-9,164,149	-16,946,263			
Total costs	2,135,974,213	50,155,031	-51,816,327	-80,225,540	-124,403,983			
Costs: (5% discount)								
Health sector costs ⁺								
Drug costs*	133,355,880	-23,608,464	22,760,097	33,946,060	49,630,303			
Other costs	163,666,335	3,928,081	-2,431,349	-3,419,776	-4,779,121			
Total	297,022,215	-19,680,383	20,328,748	30,526,284	44,851,182			
Patient/family costs ⁺	725,245,868	40,227,136	-40,635,053	-61,561,754	-92,155,327			
Productivity costs ⁺	356,150,381	1,280,091	-2,765,240	-4,862,983	-8,815,238			
Total costs ⁺	1,378,418,464	21,826,844	-23,071,545	-35,898,452	-56,119,383			

Table F.5. Cost-effectiveness and cost-utility analysis, South Australia (2010-2079: 5% discount) from a health sector perspective: incremental cost per LY gained, incremental cost per SVR achieved, and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect (LY lost) [‡]	Increased effect [§]	ICER* (\$/LY)
Reduction scenario	277,341,832		9,009		(+,)
Current scenario	297,022,215	19,680,383	7,942	1,067	\$18,442
Increased scenario 1	317,350,963	20,328,748	7,296	646	\$31,449
Increased scenario 2	327,548,499	30,526,284	7,058	884	\$34,521
Increased scenario 3	341,873,397	44,851,182	6,771	1,171	\$38,302
Treatment scenario	Cost (\$)	Increased cost	Effect (SVR)	Increased effect	ICER* (\$/SVR)
Reduction scenario	277,341,832		5,502		
Current scenario	297,022,215	19,680,383	6,805	1,303	15,101
Increased scenario 1	317,350,963	20,328,748	8,073	1,268	16,033
Increased scenario 2	327,548,499	30,526,284	8,699	1,894	16,121
Increased scenario 3	341,873,397	44,851,182	9,571	2,766	16,215
Treatment scenario	Cost (\$)	Increased cost	Effect (QALY)	Increased effect ⁺	ICER* (\$/QALY)
Reduction scenario	277,341,832		598,779		
Current scenario	297,022,215	19,680,383	600,534	1,754	11,219
Increased scenario 1	317,350,963	20,328,748	602,323	1,790	11,360
Increased scenario 2	327,548,499	30,526,284	603,248	2,715	11,244
Increased scenario 3	341,873,397	44,851,182	604,603	4,070	11,021

Appendix G: Additional results and tables for TAS

Table G.1. Health impact of hepatitis C treatment strategies in Tasmania, 2010-2013

	HCV treatment scenarios							
Description		incremental, relative to the current scenario						
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario i	scenario 2	scenario 3			
Average number of HCV cases	72	53	107	131	186			
treated per year								
Health effects* 2010-2013								
Life years lost / gained	410	-1	1	1	1			
Number of treatment gains		-48	68	104	171			
(Sustained virological response)								
HCV cases / cases averted	1,000	-2	3	5	8			
Liver failure cases / cases averted	20	0	0	0	0			
HCC cases / cases averted	10	0	0	0	0			
HCV-related liver transplant	4	0	0	0	0			
cases / cases averted								
Liver-related deaths / deaths	21	0	0	0	0			
averted								

Table G.2. Costs associated with hepatitis C treatment strategies in Tasmania, 2010-2013

	HCV treatment scenarios							
Description		Incren	nental \$, relative	e to the current sc	enario [†]			
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario 1	scenario 2	scenario 3			
Costs: (undiscounted)								
Health sector costs ⁺								
Drug costs*	7,170,368	-727,442	1,059,465	1,624,120	2,655,634			
Other costs	8,741,923	-172,216	249,802	385,459	630,168			
Total	15,912,291	-899,657	1,309,266	2,009,580	3,285,802			
Patient/family costs ⁺	39,393,217	-52,682	62,962	110,284	170,429			
Productivity costs ⁺	35,148,336	72,657	-110,251	-164,851	-275,820			
Total costs	90,453,843	-879,682	1,261,977	1,955,013	3,180,412			
Costs: (3% discount)								
Health sector costs ⁺								
Drug costs*	6,862,144	-673,305	982,471	1,505,498	2,462,544			
Other costs	8,364,450	-159,479	231,780	357,499	584,669			
Total	15,226,594	-832,784	1,214,251	1,862,997	3,047,213			
Patient/family costs ⁺	37,702,409	-49,532	59,709	104,152	161,321			
Productivity costs ⁺	22,230,939	44,407	-67,501	-100,840	-168,797			
Total costs	75,159,943	-837,908	1,206,459	1,866,309	3,039,737			
Costs: (5% discount)								
Health sector costs ⁺								
Drug costs*	6,672,669	-640,336	935,517	1,433,179	2,344,792			
Other costs	8,132,403	-151,719	220,785	340,446	556,911			
Total	14,805,073	-792,056	1,156,302	1,773,625	2,901,703			
Patient/family costs ⁺	36,662,992	-47,589	57,683	100,351	155,661			
Productivity costs ⁺	18,269,322	35,673	-54,287	-81,052	-135,714			
Total costs ⁺	69,737,387	-803,972	1,159,698	1,792,924	2,921,651			

90

	HCV treatment scenarios							
Description		increme	incremental, relative to the current scenario					
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario 1	scenario 2	scenario 3			
Average number of HCV cases	74	43	126	165	253			
treated per year								
Health effects [*] 2010-2069								
Life years lost / gained	7,903	-1,965	1,111	1,515	2,008			
Number of treatment gains		-1,235	1,060	1,541	2,143			
(Sustained virological response)								
HCV cases / cases averted	17,442	-43	157	292	553			
Liver failure cases / cases averted	374	-103	58	79	104			
HCC cases / cases averted	200	-53	30	41	54			
HCV-related liver transplant	73	-19	11	14	19			
cases / cases averted								
Liver-related deaths / deaths	400	-100	56	77	102			
averted								

Table G.3. ⊢	lealth impact	of hepatitis	C treatment strategies i	n Tasmania,	2010-2079
--------------	---------------	--------------	--------------------------	-------------	-----------

Table G.4.	Costs associated	with hepatitis	C treatment strategies i	n Tasmania, 2	2010-2079
------------	------------------	----------------	--------------------------	---------------	-----------

	HCV treatment scenarios							
Description		Incremental \$, relative to the current scenario ⁺						
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario 1	scenario 2	scenario 3			
Total number of HCV	5,177	2,982	8,794	11,583	17,694			
cases treated								
Costs: (undiscounted)								
Health sector costs ⁺								
Drug costs*	129,210,826	-22,168,538	18,776,181	27,337,879	38,015,016			
Other costs	159,470,304	11,150,495	-7,864,441	-11,346,041	-16,302,454			
Total	288,681,129	-11,018,043	10,911,740	15,991,838	21,712,563			
Treated (% Total)	58%	50%	64%	66%	69%			
Patient/family costs ⁺	700,636,989	62,834,102	-59,696,103	-89,574,060	-131,960,921			
Treated	8%	6%	10%	11%	13%			
Productivity costs ⁺	612,973,994	1,520,281	-5,530,747	-10,258,961	-19,436,274			
Total costs	1,602,292,112	53,336,341	-54,315,109	-83,841,183	-129,684,633			
Costs: (3% discount)								
Health sector costs ⁺								
Drug costs*	55,124,141	-9,722,256	8,929,242	13,188,272	18,962,742			
Other costs	67,788,573	2,729,607	-1,869,488	-2,662,338	-3,812,480			
Total	122,912,714	-6,992,649	7,059,755	10,525,934	15,150,262			
Patient/family costs ⁺	299,409,535	20,444,307	-20,153,359	-30,293,183	-45,113,980			
Productivity costs ⁺	173,630,592	547,936	-1,424,505	-2,552,594	-4,726,719			
Total costs	595,952,841	13,999,593	-14,518,109	-22,319,843	-34,690,437			
Costs: (5% discount)								
Health sector costs ⁺								
Drug costs*	37,207,296	-6,589,355	6,358,617	9,463,740	13,846,527			
Other costs	45,664,157	1,096,640	-684,844	-947,566	-1,331,383			
Total	82,871,453	-5,492,716	5,673,773	8,516,174	12,515,144			
Patient/family costs ⁺	202,349,036	11,229,241	-11,381,990	-17,130,797	-25,699,605			
Productivity costs ⁺	99,368,582	357,330	-774,411	-1,353,445	-2,458,430			
Total costs ⁺	384,589,071	6,093,855	-6,482,628	-9,968,069	-15,642,892			

Table G.5. Cost-effectiveness and cost-utility analysis, Tasmania (2010-2079: 5% discount) from a health sector perspective: incremental cost per LY gained, incremental cost per SVR achieved, and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect (LY lost) [‡]	Increased effect [§]	ICER* (\$/LY)
Reduction scenario	77,378,737		2,514	enect	(4,)
Current scenario	82,871,453	5,492,716	2,216	298	\$18,440
Increased scenario 1	88,545,226	5,673,773	2,035	181	\$31,342
Increased scenario 2	91,387,626	8,516,174	1,970	246	\$34,605
Increased scenario 3	95,386,597	12,515,144	1,889	327	\$38,323
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(SVR)	effect	(\$/SVR)
Reduction scenario	77,378,737		1,535		
Current scenario	82,871,453	5,492,716	1,899	364	15,099
Increased scenario 1	88,545,226	5,673,773	2,254	355	15,981
Increased scenario 2	91,387,626	8,516,174	2,426	527	16,158
Increased scenario 3	95,386,597	12,515,144	2,670	771	16,223
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect*	(\$/QALY)
Reduction scenario	77,378,737		167,064		
Current scenario	82,871,453	5,492,716	167,553	490	11,217
Increased scenario 1	88,545,226	5,673,773	168,055	501	11,320
Increased scenario 2	91,387,626	8,516,174	168,309	755	11,273
Increased scenario 3	95,386,597	12,515,144	168,688	1,135	11,027

Appendix H: Additional results and tables for VIC

		HCV	' treatment sco	enarios	
Description		increme	ntal, relative t	to the current	scenario
	Current scenario	Reduction scenario	Increased scenario 1	Increased scenario 2	Increased scenario 3
Average number of HCV cases	766	566	1,139	1,411	1,984
treated per year					
Health effects [*] 2010-2013					
Life years lost / gained	4,374	-6	8	11	16
Number of treatment gains (Sustained virological response)		-527	723	1,132	1,826
HCV cases / cases averted	10,681	-23	33	51	84
Liver failure cases / cases averted	210	-2	2	3	4
HCC cases / cases averted	112	-1	1	1	1
HCV-related liver transplant cases / cases averted	41	0	0	0	0
Liver-related deaths / deaths averted	222	0	0	1	1

Table H.1. Health impact of hepatitis C treatment strategies in Victoria, 2010-2013

Table H.2.	Costs associated	with hepatitis	C treatment	strategies ir	Nictoria.	2010-2013
1001011.2.	costs associated	i with neputh.	c ucument	strategies in	i victoria,	2010 2015

	HCV treatment scenarios						
Description		Incremental \$, relative to the current scenario [†]					
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Costs: (undiscounted)							
Health sector costs ⁺							
Drug costs*	76,574,978	-7,975,727	11,201,657	17,571,850	28,373,956		
Other costs	93,357,858	-1,882,706	2,645,795	4,161,347	6,732,553		
Total	169,932,835	-9,858,433	13,847,451	21,733,197	35,106,509		
Patient/family costs ⁺	420,695,162	-541,654	695,379	1,128,590	1,815,859		
Productivity costs ⁺	375,361,864	807,110	-1,153,581	-1,806,811	-2,947,935		
Total costs	965,989,862	-9,592,977	13,389,250	21,054,975	33,974,433		
Costs: (3% discount)							
Health sector costs ⁺							
Drug costs*	73,283,342	-7,385,141	10,385,892	16,292,023	26,311,120		
Other costs	89,326,702	-1,744,190	2,454,496	3,860,394	6,246,518		
Total	162,610,044	-9,129,331	12,840,388	20,152,417	32,557,638		
Patient/family costs ⁺	402,638,391	-510,326	658,427	1,067,736	1,718,951		
Productivity costs ⁺	237,412,263	493,619	-706,014	-1,105,612	-1,804,051		
Total costs	802,660,698	-9,146,037	12,792,801	20,114,541	32,472,538		
Costs: (5% discount)							
Health sector costs ⁺							
Drug costs*	71,259,871	-7,025,379	9,888,467	15,511,635	25,053,146		
Other costs	86,848,596	-1,659,779	2,337,798	3,676,806	5,949,994		
Total	158,108,467	-8,685,157	12,226,265	19,188,441	31,003,141		
Patient/family costs ⁺	391,538,063	-490,964	635,458	1,029,946	1,658,728		
Productivity costs ⁺	195,104,700	396,705	-567,662	-888,852	-1,450,450		
Total costs ⁺	744,751,231	-8,779,417	12,294,060	19,329,534	31,211,419		

	HCV treatment scenarios					
Description		increme	ntal, relative t	o the current	scenario	
	Current	Reduction	Increased	Increased	Increased	
	scenario	scenario	scenario 1	scenario 2	scenario 3	
Average number of HCV cases	790	455	1,341	1,767	2,699	
treated per year						
Health effects [*] 2010-2069						
Life years lost / gained	84,403	-20,998	11,860	16,193	21,444	
Number of treatment gains		-13,194	11,317	16,468	22,888	
(Sustained virological response)						
HCV cases / cases averted	186,270	-462	1,680	3,119	5,906	
Liver failure cases / cases averted	3,993	-1,096	616	841	1,113	
HCC cases / cases averted	2,137	-567	319	436	577	
HCV-related liver transplant	782	-200	113	154	204	
cases / cases averted						
Liver-related deaths / deaths	4,276	-1,064	601	820	1,086	
averted						

Table H.3. Health ir	npact of he	patitis C treatmer	nt strategies in	Victoria,	2010-2079
----------------------	-------------	--------------------	------------------	-----------	-----------

Table H.4. Costs associated with h	nepatitis C treatment strateg	es in Victoria, 2010-2079
------------------------------------	-------------------------------	---------------------------

	HCV treatment scenarios							
Description		Incremental \$, relative to the current scenario ⁺						
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario 1	scenario 2	scenario 3			
Total number of HCV	55,285	31,830	93,904	123,720	188,964			
cases treated								
Costs: (undiscounted)								
Health sector costs ⁺								
Drug costs*	1,379,889,140	-236,816,262	200,524,909	291,932,799	405,971,101			
Other costs	1,703,040,331	119,196,527	-83,922,021	-121,289,525	-174,107,415			
Total	3,082,929,471	-117,619,735	116,602,888	170,643,275	231,863,687			
Treated (% Total)	58%	50%	64%	66%	69%			
Patient/family costs ⁺	7,482,357,202	671,505,361	-637,232,352	-957,145,614	-1,409,294,086			
Treated	8%	6%	10%	11%	13%			
Productivity costs ⁺	6,546,173,766	16,242,924	-59,042,064	-109,620,220	-207,573,775			
Total costs	17,111,460,439	570,128,550	-579,671,528	-896,122,559	-1,385,004,175			
Costs: (3% discount)								
Health sector costs ⁺								
Drug costs*	588,690,683	-103,926,057	95,340,236	140,875,698	202,508,742			
Other costs	723,937,875	29,206,220	-19,928,564	-28,498,826	-40,719,013			
Total	1,312,628,558	-74,719,837	75,411,672	112,376,872	161,789,729			
Patient/family costs ⁺	3,197,504,650	218,652,416	-215,025,128	-323,906,049	-481,815,167			
Productivity costs ⁺	1,854,264,390	5,860,547	-15,199,338	-27,290,762	-50,480,648			
Total costs	6,364,397,598	149,793,127	-154,812,794	-238,819,939	-370,506,086			
Costs: (5% discount)								
Health sector costs ⁺								
Drug costs*	397,350,223	-70,478,254	67,877,329	101,120,922	147,872,477			
Other costs	487,663,259	11,746,244	-7,288,083	-10,165,934	-14,221,222			
Total	885,013,482	-58,732,010	60,589,245	90,954,988	133,651,255			
Patient/family costs ⁺	2,160,960,475	120,179,291	-121,387,182	-183,274,098	-274,478,006			
Productivity costs ⁺	1,061,193,222	3,825,129	-8,259,118	-14,477,849	-26,255,993			
Total costs ⁺	4,107,167,180	65,272,410	-69,057,055	-106,796,958	-167,082,745			

Table H.5. Cost-effectiveness and cost-utility analysis, Victoria (2010-2079: 5% discount) from a health sector perspective: incremental cost per LY gained, incremental cost per SVR achieved, and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect (LY lost) [‡]	Increased effect [§]	ICER* (\$/LY)
Reduction scenario	826,281,472		26,852	enect	(4/ = 1)
Current scenario	885,013,482	58,732,010	23,665	3,187	\$18,426
Increased scenario 1	945,602,728	60,589,245	21,734	1,931	\$31,381
Increased scenario 2	975,968,471	90,954,988	21,032	2,633	\$34,549
Increased scenario 3	1,018,664,737	133,651,255	20,177	3,488	\$38,320
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	
Reduction scenario	826 281 472		16 384	enect	(\$/ 3 V K)
Current conario	995 012 492	E9 722 010	20.277	2 902	15.097
Current scenario	005,015,402	56,752,010	20,277	5,095	15,007
Increased scenario 1	945,602,728	60,589,245	24,063	3,787	16,000
Increased scenario 2	975,968,471	90,954,988	25,914	5,638	16,133
Increased scenario 3	1,018,664,737	133,651,255	28,516	8,239	16,222
Treatment scenario	Cost (\$)	Increased cost	Effect	Increased	ICER*
			(QALY)	effect ⁺	(\$/QALY)
Reduction scenario	826,281,472		1,784,123		
Current scenario	885,013,482	58,732,010	1,789,363	5,241	11,207
Increased scenario 1	945,602,728	60,589,245	1,794,709	5,346	11,335
Increased scenario 2	975,968,471	90,954,988	1,797,445	8,082	11,254
Increased scenario 3	1,018,664,737	133,651,255	1,801,484	12,121	11,026

Appendix I: Additional results and tables for WA

Table I.1. Health impact of hepatitis C treatment strategies in Western Australia, 2010-2013

	HCV treatment scenarios							
Description		incremental, relative to the current scenario						
	Current	Reduction	Increased	Increased	Increased			
	scenario	scenario	scenario 1	scenario 2	scenario 3			
Average number of HCV cases	382	285	566	701	989			
treated per year								
Health effects [*] 2010-2013								
Life years lost / gained	2,182	-3	4	6	8			
Number of treatment gains		-256	357	560	910			
(Sustained virological response)								
HCV cases / cases averted	5,329	-11	16	25	42			
Liver failure cases / cases averted	105	-1	1	1	2			
HCC cases / cases averted	56	0	0	0	1			
HCV-related liver transplant	20	0	0	0	0			
cases / cases averted								
Liver-related deaths / deaths	111	0	0	0	0			
averted								

Table I.2. Costs associated with hepatitis C treatment strategies in WA, 2010-2013

	HCV treatment scenarios					
Description		Incremental \$, relative to the current scenario ⁺				
	Current	Reduction	Increased	Increased	Increased	
	scenario	scenario	scenario 1	scenario 2	scenario 3	
Costs: (undiscounted)						
Health sector costs ⁺						
Drug costs*	38,202,047	-3,856,845	5,535,863	8,711,317	14,144,308	
Other costs	46,574,944	-913,588	1,309,461	2,065,377	3,356,524	
Total	84,776,991	-4,770,433	6,845,324	10,776,694	17,500,832	
Patient/family costs ⁺	209,877,828	-282,675	357,812	576,839	909,000	
Productivity costs ⁺	187,262,174	384,248	-565,510	-889,479	-1,468,627	
Total costs	481,916,994	-4,668,859	6,637,626	10,464,054	16,941,205	
Costs: (3% discount)						
Health sector costs ⁺						
Drug costs*	36,559,902	-3,569,548	5,131,914	8,075,966	13,115,805	
Other costs	44,563,857	-845,954	1,214,582	1,915,787	3,114,161	
Total	81,123,759	-4,415,502	6,346,496	9,991,753	16,229,966	
Patient/family costs ⁺	200,869,602	-265,678	338,353	545,212	860,379	
Productivity costs ⁺	118,441,290	234,821	-346,046	-544,204	-898,771	
Total costs	400,434,652	-4,446,360	6,338,803	9,992,760	16,191,574	
Costs: (5% discount)						
Health sector costs ⁺						
Drug costs*	35,550,425	-3,394,599	4,885,630	7,688,586	12,488,603	
Other costs	43,327,565	-804,754	1,156,710	1,824,541	2,966,300	
Total	78,877,989	-4,199,353	6,042,340	9,513,127	15,454,903	
Patient/family costs ⁺	195,331,832	-255,199	326,276	525,592	830,169	
Productivity costs ⁺	97,334,714	188,620	-278,204	-437,469	-722,616	
Total costs ⁺	371,544,535	-4,265,932	6,090,411	9,601,250	15,562,455	

96

	HCV treatment scenarios					
Description		scenario				
	Current	Reduction	Increased	Increased	Increased	
	scenario	scenario	scenario 1	scenario 2	scenario 3	
Average number of HCV cases	394	227	669	882	1,347	
treated per year						
Health effects* 2010-2069						
Life years lost / gained	42,107	-10,466	5,914	8,076	10,698	
Number of treatment gains		-6,579	5,645	8,214	11,418	
(Sustained virological response)						
HCV cases / cases averted	92,927	-230	838	1,556	2,947	
Liver failure cases / cases averted	1,992	-546	307	419	555	
HCC cases / cases averted	1,066	-282	159	217	288	
HCV-related liver transplant	390	-100	56	77	102	
cases / cases averted						
Liver-related deaths / deaths	2,133	-530	300	409	542	
averted						

Table I.4. Costs associated	with hepatitis C	C treatment strategies in W	A. 2010-2079
Tuble II II Costs ussociated	man nepatitis c	s deadhene shategies in 17	9 2010 207 5

	HCV treatment scenarios						
Description		Incremental \$, relative to the current scenario ⁺					
	Current	Reduction	Increased	Increased	Increased		
	scenario	scenario	scenario 1	scenario 2	scenario 3		
Total number of HCV	27,581	15,887	46,842	61,715	94,270		
cases treated							
Costs: (undiscounted)	•						
Health sector costs ⁺							
Drug costs*	688,405,169	-118,101,564	100,039,567	145,649,244	202,536,285		
Other costs	849,620,656	59,397,217	-41,838,914	-60,477,074	-86,853,459		
Total	1,538,025,825	-58,704,347	58,200,654	85,172,171	115,682,827		
Treated (% Total)	58%	50%	64%	66%	69%		
Patient/family_costs [†]			-				
	3,732,830,567	334,722,904	317,774,890	-477,360,109	-703,047,285		
Treated	8%	6%	10%	11%	13%		
Productivity costs ⁺	3,265,782,667	8,099,202	-29,442,889	-54,671,458	-103,550,703		
Total costs			-				
	8,536,639,060	284,117,758	289,017,125	-446,859,397	-690,915,161		
Costs: (3% discount)	•						
Health sector costs ⁺							
Drug costs*	293,688,572	-51,788,471	47,553,109	70,275,548	101,029,051		
Other costs	361,161,757	14,537,792	-9,926,759	-14,199,487	-20,310,752		
Total	654,850,329	-37,250,679	37,626,350	56,076,062	80,718,299		
Patient/family_costs [†]			-				
	1,595,184,150	108,893,719	107,179,997	-161,487,782	-240,349,699		
Productivity costs ⁺	925,063,359	2,918,459	-7,576,662	-13,606,961	-25,182,217		
Total costs	3,175,097,838	74,561,499	-77,130,310	-119,018,682	-184,813,616		
Costs: (5% discount)							
Health sector costs ⁺							
Drug costs*	198,231,797	-35,096,357	33,847,767	50,436,958	73,770,580		
Other costs	243,288,020	5,839,522	-3,625,461	-5,058,793	-7,092,414		
Total	441,519,817	-29,256,834	30,222,306	45,378,165	66,678,166		
Patient/family costs ⁺	1,078,068,426	59,803,495	-60,481,284	-91,345,945	-136,915,571		
Productivity costs ⁺	529,412,672	1,902,916	-4,115,591	-7,216,616	-13,097,454		
Total costs ⁺	2,049,000,916	32,449,577	-34,374,570	-53,184,396	-83,334,859		

Table I.5. Cost-effectiveness and cost-utility analysis, Western Australia (2010-2079: 5% discount) from a health sector perspective: incremental cost per LY gained, incremental cost per SVR achieved, and incremental cost per QALY gained

Treatment scenario	Cost (\$)	Increased cost	Effect (LY lost) [‡]	Increased effect [§]	ICER* (\$/LY)
Reduction scenario	412,262,983		13,392		(+,)
Current scenario	441,519,817	29,256,834	11,806	1,586	\$18,442
Increased scenario 1	471,742,123	30,222,306	10,844	962	\$31,414
Increased scenario 2	486,897,983	45,378,165	10,494	1,312	\$34,581
Increased scenario 3	508,197,983	66,678,166	10,066	1,740	\$38,325
Treatment scenario	Cost (\$)	Increased cost	Effect (SVR)	Increased effect	ICER* (\$/SVR)
Reduction scenario	412,262,983		8,178		
Current scenario	441,519,817	29,256,834	10,116	1,937	15,101
Increased scenario 1	471,742,123	30,222,306	12,003	1,887	16,016
Increased scenario 2	486,897,983	45,378,165	12,926	2,810	16,148
Increased scenario 3	508,197,983	66,678,166	14,226	4,110	16,224
Treatment scenario	Cost (\$)	Increased cost	Effect (QALY)	Increased effect ⁺	ICER* (\$/QALY)
Reduction scenario	412,262,983		890,078		
Current scenario	441,519,817	29,256,834	892,686	2,608	11,219
Increased scenario 1	471,742,123	30,222,306	895,349	2,664	11,347
Increased scenario 2	486,897,983	45,378,165	896,714	4,028	11,265
Increased scenario 3	508,197,983	66,678,166	898,732	6,046	11,028

Appendix J: Methods and data sources

A dynamic mathematical transmission model of HCV infection was developed to describe the transmission of HCV through a population and track the disease progression of HCVinfected individuals. A schematic diagram of the model structure is shown in Figure J.1. The model is a compartmental model based on 240 ordinary differential equations, which describe the estimated number of people in a population in each mutually exclusive compartment based on HCV-related and behavioural status. The model was solved numerically in MATLAB software and was used to estimate the number of people in each HCV health state, including important clinical endpoints such as liver failure, HCC, and liver transplant, as well as liver-related death. These outputs were used as inputs in an economic analysis to estimate the economic burden of hepatitis C from the year 2010 until 2039 (30year time horizon). A cost-effectiveness (CEA) and cost-utility (CUA) analysis was performed to compare the costs and benefits associated with current levels of treatment for hepatitis C with four alternative hepatitis C treatment scenarios. Currently, approximately 3,500 people infected with hepatitis C (~1-2% of all chronic hepatitis C cases) receive combination PEG-IFN and ribavirin therapy each year in Australia [3]. In this study we simulate the following treatment scenarios:

- Current treatment scenario: no change from current practice;
- Reduction scenario: treatments decline to 2,000 from 2010 onwards;
- Increased scenario 1: treatments increase steadily to 6,000 per year from 2011 onwards;
- Increased scenario 2: treatments increase steadily to 8,000 per year from 2012 onwards;
- Increased scenario 3: treatments increase steadily to 12,000 per year from 2014 onwards.

Health benefits, measured in terms of life years (LYs) gained, quality-adjusted life years (QALYs) gained, and total health care-related costs for each treatment strategy were computed from a societal perspective, which accounts for benefits, risks, and costs to all parties according to the Panel on Cost-Effectiveness of Health and Medicine [31] (although patient-time costs and productivity costs were excluded in the CEA). Other key health outcomes of the analysis include the number of new liver failure cases averted, new HCC cases averted, the number of liver transplants avoided, and the number of liver-related deaths averted. The years of potential life lost due to HCV was estimated using the life expectancy of the average Australian [32], adjusted for premature mortality associated with hepatitis C [23]. Based on published literature [23, 33], it was assumed that the average age at liver-related death was 65 (range, 61-70) years.

The comparative efficiencies of alternative HCV treatment scenarios were measured by the incremental cost-effectiveness ratio (ICER), defined as the additional cost of a specific strategy, divided by its additional health benefit, expressed as cost per QALY gained. The ICER for an alternative treatment scenario was computed in reference to the next most effective option. All costs and benefits were discounted at an annual rate of 5%, based on Pharmaceutical Benefits Advisory Committee guidelines to reflect the higher present value of money [30].

Data sources

The model was parameterised using the best available biological, behavioural, clinical and epidemiological data from the National Annual Surveillance Reports [3], Australian Needle and Syringe Program Survey behavioural reports [34], and published peer-reviewed literature. These values were used to estimate the annual incidence of HCV, as previously described [35], and important clinical endpoints. Stage-specific transition probabilities were derived from a meta-analysis of more than 100 hepatitis C natural history studies [36]. Transition probabilities for end-stage liver disease (i.e., progression from F4 to liver failure or HCC) were derived from pooled results of published literature [37-55]. Competing mortality risk data were obtained from the published literature [42, 46, 54, 56]. Characteristics of individuals with chronic HCV infection undergoing treatment, including liver disease stage were obtained from an Australian HCV Clinical Audit Study (unpublished). Treatment efficacy data as a function of genotype and stage of liver disease were based on a published randomised controlled trial [9]. The model inputs that characterise the population and the natural history of hepatitis C with their uncertainty bounds are summarised in Table J.1 and Table J.2.

Mathematical HCV epidemic transmission model

The model describes IDUs and non-IDUs aged 15-64 in Australia (Figure 1). Definitions for IDU status were based on the Australian NSP Survey [34]: a 'regular IDU' is defined as someone who reported injecting 'more than weekly' in the month prior to the survey; and an 'occasional IDU' is defined as someone who reported injecting 'less than weekly' in the month prior to the survey. These are generally consistent with the previous HCV Projections Working Group definitions [5]. Non-IDUs considered were those who acquired HCV through routes other than injecting drug use. The model tracked the shifts in the number of IDUs in the population, including the entry of new injectors, transitions between injecting status (e.g., transition from occasional to regular), and the rate of cessation of injecting. The infection of IDUs with HCV was simulated based on injecting behaviour and mixing in the population. The analyses were stratified by gender and genotype. The model inputs that characterise the population are summarised in Table J.1.

Natural history model of hepatitis C

The model tracked the natural history of disease progression for people infected with HCV and captures the fact that an individual who is infected with HCV and clears the virus remains susceptible to re-infection. Among spontaneous clearers, it was assumed that re-infection rate was similar to that of the initial infection. Among those who had achieved a successful treatment and cleared the virus (sustained virological response), it was assumed that re-infection rate is decreased to approximately 10% of the initial infection rate [14-16].

Fifteen compartments describe IDUs and non-IDUs who are monoinfected with HCV: in acute stage, liver fibrosis stages F0, F1, F2, F3, F4 (compensated cirrhosis), and for each of these, whether they are untreated or receiving treatment. People infected with HCV who have advanced fibrosis can progress to clinical outcomes of liver failure, HCC, or may receive a liver transplant. It was assumed that individuals that progress to these three clinical outcomes no longer inject drugs. Annual transition probabilities determined the movements of individuals through different health states. We assumed that liver disease progresses one stage at a time. We also assumed that regression from a later to an earlier stage (e.g., F1 to F0, F3 to F2) does not occur, although there is evidence to suggest that this may occur in some individuals with successful treatment [57]. Each year, individuals face competing mortality risks from liver failure, HCC, and other causes unrelated to HCV, including drug-related and background death. Annual background death rates were adjusted taking into account premature mortality due to HCV infection [23, 33]. The model inputs that characterise the natural history of hepatitis C are summarised in Table J.2.

HCV treatment

Based on an Australian HCV Clinical Audit Study (unpublished), the proportion of people with chronic HCV infection within each stage commencing treatment is as follows: 58% F0 stage; 44% F1 stage; 66% F2 stage; 68% F3 stage; and 62% F4 stage (Table J.2). The overall proportion of IDUs among the treated population is approximately 80%. Current IDUs represent approximately 5% of the treated population. The current standard treatment for chronic hepatitis C is combination therapy with pegylated interferon (PEG-IFN) alfa and ribavirin administered for 24 weeks for HCV genotypes 2 or 3 or 48 weeks for HCV genotype 1 [9, 11, 12]. We assumed that people with acute HCV infection and those in the advanced disease stages (i.e., liver failure, HCC) would not undergo treatment on the basis that only a small minority of these groups would receive treatment each year in real life. However, cases with liver failure and HCC are considered for liver transplantation. We also assumed that antiviral therapy for hepatitis C is considered only once. Patients who do not achieve sustained response to therapy receive no further treatment. Non-adherence to therapy (~15%) [58, 59] was also considered and hepatitis C treatment cost adjusted accordingly.

Model calibration

The mathematical model was calibrated to be consistent with available epidemiologic data in Australia in terms of incidence and prevalence of HCV and to reflect clinical data on progression of HCV infection, that is, incidence of liver failure and HCC, the number of liver transplants and liver-related death, and the number of people treated in the year 2008.[2] We assume that changes in treatment numbers would not have a major impact on these estimates in the base year (2010).

Costs

Resource use was considered under the following broad headings: i) health sector resource use; ii) patient and family resource use; and iii) productivity losses and gains. Resource use in other sectors such as voluntary sector and other home help visits associated with

treatment are difficult to identify, measure or value. Therefore, these costs were not included in this analysis.

Annual health care costs of patients in each HCV state were identified through published literature [28, 60] and the creation of a model of service delivery reflecting current practice. Health care-related costs include specialist and GP visits, medications, prescription drugs, laboratory and diagnostic tests, procedures, emergency department visits, hospitalisations, nursing personnel, psychological support, social support, counselling and education. Based on a Canadian population-based study (Paterson et al, unpublished), we assumed that mental health services are used in 50% of the people infected with chronic HCV infection. The unit costs of hospitalisation were estimated based on the frequency and proportions of admission to hospital with different health states of HCV and deriving a weighted average cost per admission in a health state using cost weights for admission to an Australian public hospital [61, 62]. Total costs are quantities of resource use multiplied by their unit costs. Unit costs for resource categories were based on the Medical Benefits Schedule (MBS) [63], Pharmaceutical Benefits Scheme (PBS) [64], National Admitted Patient Care Collection (NAPCC) 2004-05 [61], and National Hospital Cost Data Collection [65]. All costs were expressed in 2008 Australian dollars using the health care component of the Consumer Price Index. Annual health care costs of hepatitis C and patient and family time costs are summarised in Table 3.

In the absence of Australian data, patient and family resource use was estimated based on a multicentre Canadian study conducted between 2006 and 2008 which used a convenience sampling method for comprehensive data collection, including patient's time, time of relatives/carers, and out-of-pocket expenses associated with medical care, including travel to and from care, waiting for appointments, receipt of care, and non-prescription medication costs during the three months prior to the survey (Federico, Krahn et al, unpublished). Australian costs were obtained using Purchasing Power Parities for GDP to convert Canadian dollars to Australian currency, and then inflated to 2008 dollars, using the Consumer Price Index for health care. Patient and carer/family time costs and out-of-pocket expenses are shown in Table J.3, J.4, and J.5.

Productivity losses associated with hepatitis C were estimated using the friction cost method [66]. This method explicitly considers economic circumstances that limit production losses due to disease. In this study, a three-month replacement and gender-specific wages were used to estimate productivity loss per person with HCV, and discounted at 3%, 0%, and 5%. Inputs for friction costs involve estimating the workforce participation rate of HCV-infected individuals for the rest of their working life, compared with a cohort of population controls who are not HCV infected, measuring their respective disability, mortality, workplace absenteeism, and employment/work force participation. Mortality among HCV-infected individuals was estimated using a decision tree in DATA PRO [67]. Survival time and age-specific mortality rates of an HCV-infected population was compared with that of the general population [68]. The proportion of full-time and part-time employment among people infected with hepatitis C was based on a study evaluating the acceptability of different methods of HCV testing among IDUs recruited through primary healthcare and drug treatment services [69, 70]. In this study, it was found that 61% of the IDUs with chronic hepatitis C reported unemployment.

Utilities

Utilities for HCV-related health states, sustained response to treatment, and disutility associated with HCV treatment, was based on peer-reviewed publications [71-73] and presented in Table J.6. A QALY framework was used in the economic analyses [31, 74]. The amount of time an individual spends in a given health state is multiplied by the health state preference value to calculate the number of QALYs gained. Thus, the QALY approach provides a combined measure of the benefits of an intervention that both extends life and maintains quality of life [75, 76].

Uncertainty and sensitivity analyses

In order to identify factors that are the most influential for yielding variation in model outputs, one-way sensitivity analyses were performed by varying key model parameters (e.g., transition probabilities, treatment efficacy, costs, utilities, and discount rate) within the ranges specified in Table 2, Table J.2, and Table J.6. The ranges were based on 95% confidence intervals where available or calculable. Health care costs were halved and doubled to obtain lower and upper limits. Latin hypercube sampling [77-79], an efficient type of stratified Monte Carlo sampling, was used to sample 100 parameter sets using the SaSAT software [79]. The model was then run 100 times, once for each set of parameter values, as an uncertainty analysis.

Figure J.1. Schematic diagram of the natural history of hepatitis C

Abbreviations	Description
IDU	Injecting drug users
Regular IDUs	An injecting drug user who has been injecting for 12 months or more
	and who reported injecting 'more than weekly' in the month prior to
	the survey
Occasional IDUs	An injecting drug user who has been injecting for less than 12
	months or someone who injects less than weekly
Former IDUs	Past injecting drug users
Non-IDUs	Individuals who have never been injecting drug users
Sustained viral clearance	Undetectable viraemia 24 weeks after treatment for hepatitis C
А	Acute hepatitis C virus infection
u	Untreated
Т	Treated for hepatitis C
FO	No fibrosis
F1	Portal fibrosis without septa (mild fibrosis)
F2	Portal fibrosis with rare septa (moderate fibrosis)
F3	Numerous septa without cirrhosis (bridging fibrosis – severe)
F4	Compensated cirrhosis
LF	Liver failure
HCC	Hepatocellular carcinoma
D _A	All cause death
D _D	Drug-related death

Table J.1. Model parameters: Demographics, drug injection behavior, and epidemiologic

Description	Value	Range	Ref
Demographics			
Total size of IDUs in Australia in 2007	196,000	105,000- 236,500	[80, 81],*
Number of male regular IDUs	94,462	37,413-103,661	+
Number of female regular IDUs	49,488	19,602-54,310	+
Number of male occasional IDUs	34,351	13,109-36,320	+
Number of female occasional IDUs	17,966	7,115-19,719	+
Entry rate into the IDU population per unit time: from non-IDU to occasional IDU	0.14	0.09-0.2	calibrated
Entry rate into the IDU population per unit time: from occasional IDU to regular IDU	0.21	0.19-0.25	calibrated
Exit rate from regular IDU population per unit time (average time of injecting drugs among regular IDUs = 12.5 years, range 8-17 years)	0.08	0.059-0.125	[82-85]
Exit rate from regular IDU to occasional IDU	0		[85],‡
Exit rate from occasional IDU population per unit time (average time of injecting drugs among occasional IDUs = six vears)	0.163	0.15-0.17	[85]
Annual background death rate:			[23, 32],§
Male	0.003	0.00075- 0.02338	
Female	0.0018	0.00028- 0.01383	
Annual drug-related death among IDUs	0.0083	0.0056-0.0121	[56]
Drug injection behaviour			
Number of injections per male regular IDU per year	565	480-662	[34],
Number of injections per female regular IDU per year	515	426-651	[34],
Number of injections per male occasional IDU per vear	19	12-22	[34]
Number of injections per female occasional IDU per vear	18	15-22	[34]
Proportion of injections that are shared among male regular IDUs		0.47-0.48	[34],¶
Proportion of injections that are shared among female regular IDUs		0.43-0.48	[34],¶
Proportion of injections that are shared among male occasional IDUs		0.25-0.27	[34],¶
Proportion of injections that are shared among female occasional IDUs		0.19-0.3	[34],¶
Epidemiologic			
Transmission probability of HCV per injection with a contaminated syringe	0.0275	0.015-0.04	[86-93],±
Transmission probability of HCV among non-IDUs	0.0005		Assumption
HCV prevalence among male regular IDUs	67%	61-73%	[34],‡
HCV prevalence among female regular IDUs	73%	63-82%	[34],‡
HCV prevalence among male occasional IDUs	65%	52-80%	[34],‡
HCV prevalence among female occasional IDUs	71%	57-84%	[34], ‡

*Using the same pattern for the change in the number of IDUs in Australia as that estimated by Law et al. [94], and adjusting slightly to the magnitude recently estimated by Mathers et al.[80].

+The estimated size of each IDU status in Australia is based on the probability distribution function and the total size of IDUs in Australia.

106

‡Assumed that regular IDUs quit injecting completely, and not entering into occasional IDU population.

\$Australian Bureau of Statistics (ABS) age and gender-specific mortality data was adjusted taking into account premature mortality associated with HCV infection [23].

IThe average number of injections per IDU per year was estimated based on the weighted average of injecting frequency stratifications from the NSP survey: i.e., the proportions of IDUs who did not inject in the last month, injected weekly or less, injected more than weekly, injected once daily, injected two to three times per day, and injected more than three times per day. It was assumed that IDUs who did not inject in the last month inject an average of once every two months, those who inject weekly or less inject an average of once every fortnight, those who inject more than weekly inject an average of 2.5 times per day and those who inject more than three times each day inject an average of four to five times per day.

¶ The average proportion of injections that are shared was estimated based on the weighted average of sharing of needles and syringes (reused someone else's used needles and syringes last month) stratifications from the NSP survey: i.e., the number of IDUs who did not reuse someone else's used needles and syringes in the last month, the number of IDUs who reused once, reused twice, reused 3-5 times, and reused more than five times. It was assumed that IDUs who reused someone else's used needles and syringes 3-5 times last month an average of four times and those who reused more than five times last month an average of six times per month.

±No study has directly estimated the probability of HCV transmission per injection by IDUs using a contaminated syringe. Numerous studies have estimated the transmission risk of HCV in an occupational setting due to needlestick injury.[86-93] In the absence of other data, these data were used to estimate transmission risk among IDUs sharing syringes. A review of these studies, paying particular attention on long-term cohort studies with larger number of cases, lead to a plausible range of transmission risk per exposure of 1.5-4%.

‡Regression analysis was performed to determine the best-fitting linear prediction line across 1999 to 2007 data after excluding outliers. 2007 data was used in the model.

*All rates are per year.

Description			Value (95% CI)	Ref
Natural history of hepatitis C				
Annual transition probability from fibrosis stage	F0 to	IDU	0.116 (0.059-0.228)	[36]
F1		Non- IDU	0.106 (0.094-0.205)	
Annual transition probability from fibrosis stage	F1 to	IDU	0.085 (0.065-0.110)	[36]
F2		Non- IDU	0.074 (0.064-0.175)	
Annual transition probability from fibrosis stage	F2 to	IDU	0.085 (0.049-0.147)	[36]
F3		Non- IDU	0.106 (0.092-0.225)	
Annual transition probability from fibrosis stage	F3 to	IDU	0.130 (0.053-0.319)	[36]
F4 (compensated cirrhosis)		Non- IDU	0.105 (0.092-0.187)	
Annual transition probability from F4 to liver fai	Annual transition probability from F4 to liver failure			[37- 54],*
Annual transition probability from F4 to HCC			0.010 (0.009-0.038)	[37- 54],*
Annual transition probability from liver failure to HCC			0.068 (0.041-0.099)	[53, 95]
Annual transition probability from liver failure u	intil liver tr	ansplant	0.033 (0.017-0.049)	[54, 55]
Annual transition probability until liver transpla with HCC	nt for indiv	iduals	0.1 (0.05-0.18)	[96],†
Annual mortality rate (liver-related death)				
Liver failure			0.138 (0.074–0.202)	[42, 46, 54]
HCC			0.605 (0.545-0.676)	
Annual transition probability until liver-related	First	year	0.169 (0.127-0.210)	[54, 97,
death for individuals who have received a liver	Afte	r first	0.034 (0.024-0.043)	98] <i>,</i> ∓
Annual transition probability until liver-related of individuals with HCC	death for			
Proportion of HCV genotype_1 in the Australian	nonulatio	n	0 55 (0 52-0 58)	[99_
Proportion of HCV genotype-1 in the Australian population			0.45 (0.42-0.48)	103],§
Treatment for henatitis C	anun popu	lation	0.13 (0.12 0.10)	-,
Proportion of individuals with chronic HCV	Fibrosis	stage 0	58%	
infection within each stage commencing	Fibrosis	stage 1	44%	II
treatment	Fibrosis	stage 2	66%	
	Fibrosis :	stage 3	68%	
	Fibrosis	stage 4	62%	
Average duration of treatment	Acute H	CV	0.46 years	[104]
0	Fibrosis	stage 0-4	0.69 (0.46-0.92)	[11, 12]
Proportion of IDUs who spontaneously clear HCV	Acute H	CV	0.25 (0.22-0.29)	[6, 104]
Proportion of HCV-treated individuals who cle treatment (sustained virological responders) in	ar the virus Acute HCV	s due to /	0.70 (0.60-0.90)	[105- 109]
Proportion of HCV-treated individuals who	Genotyp	e-1	0.57 (0.50-0.64)	[9]
clear the virus due to treatment in F0-F2 stage	Genotyp	e non-1	0.84 (0.78-0.88)	
Proportion of HCV-treated individuals who	Genotyp	e-1	0.41 (0.31-0.52)	[9]
clear the virus due to treatment in F3-F4 stage	Genotvo	e non-1	0.74 (0.62-0.82)	

Table J.2. Natural history of hepatitis C and treatment parameters

*Pooled estimate from published literature [37-53]; weighted using sample size: Annual transition probability from F4 to liver failure: 0.055 (0.040-0.092); Annual transition probability from F4 to HCC: 0.031 (0.024-0.038). Calibrated values 0.037 and 0.01 respectively were used in the model.

†11 of 111 new HCV-related HCC reported cases in 2007 in Australia received a liver transplant [96]. This leads to a 95% confidence interval of 5-18%.

‡The deterministic ordinary differential equation model assumes exponential rates. The best-fitting exponential function over 40 years was determined, leading to an average transition probability of 0.043 (0.0294, 0.0557) per year.

§Pooled estimate based on the published literature; [99-103] weighted using sample size. Assumed similar genotype distributions among IDUs, based on the evidence of decreasing proportions of HCV genotype 1 infections over the period 1970s to 1990s [110].

Based on the HCV Clinical Audit Study (unpublished).

Disease Stage	Estimate	95% CI	
		LB	UB
Viral clearance	\$331	\$207	\$456
Chronic HCV	\$1,723	\$1,120	\$2,324
Cirrhosis	\$2,381	\$1,490	\$3,272
Hepatocellular carcinoma	\$3,382	\$932	\$5,833
Liver transplant	\$8,173	\$2,216	\$14,130
Treatment	\$1,796	\$881	\$2,711
Total (weighted)	\$2,021	\$1,499	\$2,544

Table J.3. Mean (95% confidence intervals) costs to hepatitis C infected patients by stage of liver disease (patient time costs)

Source: Federico, Krahn et al. (unpublished).

Table J.4. Mean (95% confidence intervals) costs to carers/family by stage of liver disease

Disease Stage	Estimate	95% CI	
	_	LB	UB
Viral clearance	\$39	\$14	\$94
Chronic HCV	\$77	\$30	\$124
Cirrhosis	\$398	\$138	\$659
Hepatocellular carcinoma	\$1,656	\$403	\$3,716
Liver transplant	\$2,868	\$406	\$6,143
Treatment	\$32	\$14	\$77
Total (weighted)	\$350	\$121	\$579

Source: Federico, Krahn et al. (unpublished)

Table J.5. Mean	(95% confidence	intervals) out-	of-pocket ex	penses by stag	ge of liver disease
-----------------	-----------------	-----------------	--------------	----------------	---------------------

Disease Stage	Estimate	95% CI	
		LB	UB
Viral clearance	\$492	\$35	\$948
Chronic HCV	\$1,028	\$597	\$1,459
Cirrhosis	\$1,432	\$473	\$2,391
Hepatocellular carcinoma	\$2,362	\$617	\$4,108
Liver transplant	\$2,624	\$1,183	\$4,065
Treatment	\$2,599	\$27	\$5,170
Total (weighted)	\$1,220	\$887	\$1,546

Source: Federico, Krahn et al. (unpublished)

Tables J.3-J.5: 2007 Canadian dollars were converted to Australian dollars using Purchasing Power Parities for GDP, and then inflated to 2008 dollars, using the Consumer Price Index for health care.

Health states	Utilities	Reference
	Mean (95% CI)	
Australian population norms (spontaneous viral clearance, never infected)	0.930 (0.928-0.932)	[111]
Sustained virological response	0.87 (0.81-0.93)	[71, 72]
Acute hepatitis C	0.81 (0.64-0.89)	*
Pre-cirrhosis (Fibrosis stage 0 to fibrosis stage 3)	0.81 (0.64-0.89)	[71-73]
Compensated cirrhosis (Fibrosis stage 4)	0.76 (0.62-0.88)	[71-73]
Decompensated cirrhosis (liver failure)	0.69 (0.52-0.87)	[71-73]
Hepatocellular carcinoma (HCC)	0.67 (0.54-0.80)	[71, 72]
Liver transplantation	0.77 (0.64-0.89)	[71, 72]
Disutility of interferon-based therapy	0.05	[71]

Table J.6. Health state utilities for chronic hepatitis C

*Assumed utility value of 0.81; approximately one-third of people with acute hepatitis C develop symptoms [104].

National Centre in HIV Epidemiology and Clinical Research

Dr. Rosie Thein Phone: +61 2 9385 0900 rthein@nchecr.unsw.edu.au

